二次函數(shù)的圖象如圖所示,根據(jù)圖象解答下列問題:

(1)寫出方程的兩個(gè)根.
(2)寫出不等式的解集.
(3)寫出的增大而減小的自變量的取值范圍.
(4)若方程有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.

(1) x1=1,x2=3;(2) 1<x<3;(3)x>2;(4)k<2.

解析試題分析:(1)看與x軸的交點(diǎn)即可;
(2)看y軸上方的函數(shù)圖象相對(duì)應(yīng)的x的值即可;
(3)看對(duì)稱軸右側(cè)的函數(shù)圖象相對(duì)應(yīng)的x的范圍即可;
(4)先移項(xiàng),整理為一元二次方程,讓根的判別式大于0求值即可.
試題解析:(1)∵二次函數(shù)y=ax2+bx+c的圖象與x軸的交點(diǎn)為(1,0),(3,0)
∴方程ax2+bx+c=0的兩個(gè)根x1=1,x2=3;
(2)由二次函數(shù)y=ax2+bx+c的圖象可知:1<x<3時(shí),二次函數(shù)y=ax2+bx+c的值大于0
∴不等式ax2+bx+c>0的解集為1<x<3;
(3)由圖象可知:二次函數(shù)y=ax2+bx+c的對(duì)稱軸為x=2
∴y隨x的增大而減小的自變量x的取值范圍為x>2;
(4)由圖象可知:二次函數(shù)y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,2),
當(dāng)直線y=k,在(0,2)的下邊時(shí),一定與拋物線有兩個(gè)不同的交點(diǎn),因而當(dāng)k<2時(shí),方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根.
考點(diǎn): 1.拋物線與x軸的交點(diǎn);2.二次函數(shù)與不等式(組).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)已知二次函數(shù),請(qǐng)你化成的形式,并在直角坐標(biāo)系中畫出的圖象;
(2)如果,是(1)中圖象上的兩點(diǎn),且,請(qǐng)直接寫出、的大小關(guān)系;
(3)利用(1)中的圖象表示出方程的根來,要求保留畫圖痕跡,說明結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線AB交x軸于點(diǎn)B,交y軸于點(diǎn)A(0,4),直線DM⊥x軸正半軸于點(diǎn)M,交線段AB于點(diǎn)C,DM=6,連接DA,∠DAC=90°,AD:AB=1:2.

(1)求點(diǎn)D的坐標(biāo);
(2)求經(jīng)過O、D、B三點(diǎn)的拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上兩點(diǎn),經(jīng)過A、C、B的拋物線的一部分與經(jīng)過點(diǎn)A、D、B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,),點(diǎn)M是拋物線的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo).
(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得的面積最大?若存在,求出面積的最大值;若不存在,請(qǐng)說明理由;
(3)當(dāng)為直角三角形時(shí),直接寫出m的值.______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,用長(zhǎng)為6m的鋁合金條制成“日”字形窗框,若窗框的寬為xm,窗戶的透光面積為ym2(鋁合金條的寬度不計(jì)).

(1)求出y與x的函數(shù)關(guān)系式;
(2)如何安排窗框的長(zhǎng)和寬,才能使得窗戶的透光面積最大?并求出此時(shí)的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)A的坐標(biāo)為(3,15),且過點(diǎn)(-2,10),對(duì)稱軸AB交軸于點(diǎn)B,點(diǎn)E是線段AB上一動(dòng)點(diǎn),以EB為邊在對(duì)稱軸右側(cè)作矩形EBCD,使得點(diǎn)D恰好落在拋物線上,點(diǎn)D′是點(diǎn)D關(guān)于直線EC的軸對(duì)稱點(diǎn).

(1)求拋物線的解析式;
(2)若點(diǎn)D′恰好落在軸上的點(diǎn)(0,6)時(shí),求此時(shí)D點(diǎn)的坐標(biāo);
(3)直線CD′交對(duì)稱軸AB于點(diǎn)F,
①當(dāng)點(diǎn)D′在對(duì)稱軸AB的左側(cè)時(shí),且△ED′F∽△CDE,求出DE:DC的值;
②連結(jié)B D′,是否存在點(diǎn)E,使△E D′B為等腰三角形?若存在,請(qǐng)直接寫出BE:BC的值,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點(diǎn)與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).

求(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

今年,在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況.(售價(jià)不低于進(jìn)價(jià)).請(qǐng)根據(jù)小麗提供的信息,解答小華和小明提出的問題.

認(rèn)真閱讀上面三位同學(xué)的對(duì)話,請(qǐng)根據(jù)小麗提供的信息.
(1)解答小華的問題;
(2)解答小明的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知二次函數(shù)y=x2+bx+c過點(diǎn)A(1,0),C(0,﹣3).

(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點(diǎn)P使△ABP的面積為10,請(qǐng)求出出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案