【題目】如圖,已知P是⊙O外一點(diǎn),PO交圓O于點(diǎn)C,OC=CP=2,弦AB⊥OC,劣弧AB的度數(shù)為120°,連接PB.
(1)求BC的長(zhǎng);
(2)求證:PB是⊙O的切線.
【答案】(1)2(2)見(jiàn)解析
【解析】解:(1)連接OB,
∵弦AB⊥OC,劣弧AB的度數(shù)為120°,
∴弧BC與弧AC的度數(shù)為:60°。∴∠BOC=60°。
∵OB=OC,∴△OBC是等邊三角形。
∵OC =2,∴BC=OC=2。
(2)證明:∵OC=CP,BC=OC,∴BC=CP。
∴∠CBP=∠CPB。
∵△OBC是等邊三角形,∴∠OBC=∠OCB=60°。∴∠CBP=30°。
∴∠OBP=∠CBP+∠OBC=90°。∴OB⊥BP。
∵點(diǎn)B在⊙O上,∴PB是⊙O的切線。
(1)連接OB,由弦AB⊥OC,劣弧AB的度數(shù)為120°,易證得△OBC是等邊三角形,則可求得BC的長(zhǎng)。
(2)由OC=CP=2,△OBC是等邊三角形,可求得BC=CP,即可得∠P=∠CBP,又由等邊三角形的性質(zhì),∠OBC=60°,∠CBP=30°,則可證得OB⊥BP,從而證得PB是⊙O的切線。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=2,點(diǎn)E是AB上一點(diǎn),將正方形沿CE折疊,點(diǎn)B落在正方形內(nèi)一點(diǎn)B'處,若△AB'D為等腰三角形,則BE的長(zhǎng)度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)畫(huà)出△ABC關(guān)于y 軸對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出A1、B1、C1的坐標(biāo).
(2)將△ABC向右平移6個(gè)單位,畫(huà)出平移后的△A2B2C2;
(3)觀察△A1B1C1和△A2B2C2,它們是否關(guān)于某直線對(duì)稱(chēng)?若是,請(qǐng)?jiān)趫D上畫(huà)出這條對(duì)稱(chēng)軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形的位置如圖所示,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.延長(zhǎng)交軸于點(diǎn),作正方形;延長(zhǎng)交軸于點(diǎn),作正方形,按這樣的規(guī)律進(jìn)行下去,第個(gè)正方形(正方形看作第個(gè))的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正面分別寫(xiě)著數(shù)字1,2,3的三張卡片(注:這三張卡片的形狀、大小、質(zhì)地,顏色等其他方面完全相同,若背面上放在桌面上,這三張卡片看上去無(wú)任何差別)洗勻后,背面向上放在桌面上,從中先隨機(jī)抽取一張卡片,記該卡片上的數(shù)字為x,再把剩下的兩張卡片洗勻后,背面向上放在桌面上,再?gòu)倪@兩張卡片中隨機(jī)抽取一張卡片,記該卡片上的數(shù)字為y.
(1)用列表法或樹(shù)狀圖法(樹(shù)狀圖也稱(chēng)樹(shù)形圖)中的一種方法,寫(xiě)出(x,y)所有可能出現(xiàn)的結(jié)果.
(2)求取出的兩張卡片上的數(shù)字之和為偶數(shù)的概率P.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,∠ABC=∠ACB,又∠BDC=∠BCD,且∠1=∠2,求∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正三角形ABC的邊長(zhǎng)AB是480毫米.一質(zhì)點(diǎn)D從點(diǎn)B出發(fā),沿BA方向,以每秒鐘10毫米的速度向點(diǎn)A運(yùn)動(dòng).
(1)建立合適的直角坐標(biāo)系,用運(yùn)動(dòng)時(shí)間t(秒)表示點(diǎn)D的坐標(biāo);
(2)過(guò)點(diǎn)D在三角形ABC的內(nèi)部作一個(gè)矩形DEFG,其中EF在BC邊上,G在AC邊上.在圖中找出點(diǎn)D,使矩形DEFG是正方形(要求所表達(dá)的方式能體現(xiàn)出找點(diǎn)D的過(guò)程);
(3)過(guò)點(diǎn)D、B、C作平行四邊形,當(dāng)t為何值時(shí),由點(diǎn)C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時(shí)點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,,射線在這個(gè)角的內(nèi)部,點(diǎn)、分別在的邊、上,且,于點(diǎn),于點(diǎn).求證:;
(2)如圖②,點(diǎn)、分別在的邊、上,點(diǎn)、都在內(nèi)部的射線上,、分別是、的外角.已知,且.求證:;
(3)如圖③,在中,,.點(diǎn)在邊上,,點(diǎn)、在線段上,.若的面積為15,求與的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△中,于,,點(diǎn)、分別為、上的兩個(gè)定點(diǎn)且,在上有一動(dòng)點(diǎn)使最短,則的最小值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com