【題目】如圖,等邊△中,,,點(diǎn)、分別為、上的兩個(gè)定點(diǎn)且,在上有一動(dòng)點(diǎn)使最短,則的最小值為_____.

【答案】5

【解析】

作點(diǎn)Q關(guān)于BD的對(duì)稱點(diǎn)Q′,連接PQ′BDE,連接QE,此時(shí)PE+EQ的值最小,最小值PE+PQ=PE+EQ′=PQ′;

解:如圖,∵△ABC是等邊三角形,

BA=BC,

BDAC,

AD=DC=3.5cm,

作點(diǎn)Q關(guān)于BD的對(duì)稱點(diǎn)Q′,連接PQ′BDE,連接QE,此時(shí)PE+EQ的值最。钚≈PE+PQ=PE+EQ′=PQ′,

AQ=2cm,AD=DC=3.5cm

QD=DQ=1.5cm,

CQ=BP=2cm,

AP=AQ=5cm,

∵∠A=60°,

∴△APQ是等邊三角形,

PQ=PA=5cm,

PE+QE的最小值為:5cm

故答案為:5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于,兩點(diǎn),與軸交于點(diǎn),頂點(diǎn)為,以為直徑作D.下列結(jié)論:①拋物線的對(duì)稱軸是直線x=3;②⊙D的面積為16π;③拋物線上存在點(diǎn)E,使四邊形ACED為平行四邊形;④直線CM與⊙D相切.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線軸,軸分別交于兩點(diǎn),點(diǎn)點(diǎn)出發(fā),沿射線的方向運(yùn)動(dòng),已知,點(diǎn)的橫坐標(biāo)為,連接,,記的面積為.

1)求關(guān)于的函數(shù)關(guān)系式及的取值范圍;

2)在圖2所示的平面直角坐標(biāo)系中畫出(1)中所得函數(shù)的圖象,記其與軸的交點(diǎn)為,將該圖象繞點(diǎn)逆時(shí)針旋轉(zhuǎn),畫出旋轉(zhuǎn)后的圖象;

3)結(jié)合函數(shù)圖象,直接寫出旋轉(zhuǎn)前后的圖象與直線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知、,,在的邊上取兩點(diǎn)(點(diǎn)是不同于點(diǎn)的點(diǎn)),若以、為頂點(diǎn)的三角形與全等,則符合條件的點(diǎn)的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某直銷公司現(xiàn)有名推銷員,月份每個(gè)人完成銷售額(單位:萬元),數(shù)據(jù)如下:

整理上面的數(shù)據(jù)得到如下統(tǒng)計(jì)表:

銷售額

人數(shù)

1)統(tǒng)計(jì)表中的 ;

2)銷售額的平均數(shù)是 ;眾數(shù)是 ;中位數(shù)是 .

3月起,公司為了提高推銷員的積極性,將采取績(jī)效工資制度:規(guī)定一個(gè)基本銷售額,在基本銷售額內(nèi),按抽成;從公司低成本與員工愿意接受兩個(gè)層面考慮,你認(rèn)為基本銷售額定位多少萬元?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線,點(diǎn)分別是直線,上任意兩點(diǎn),在直線上取一點(diǎn),使,連接,在直線上任取一點(diǎn),作,交直線于點(diǎn)

1)如圖1,若點(diǎn)是線段上任意一點(diǎn),,求證:;

2)如圖2,點(diǎn)在線段的延長(zhǎng)線上時(shí),互為補(bǔ)角,若,請(qǐng)判斷線段的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):如圖1, 均為等邊三角形,點(diǎn)在同一直線上,連接

①求證:; ②求的度數(shù).

(2)拓展探究:如圖2, 均為等腰直角三角形,,點(diǎn)在同一直線上邊上的高,連接

①求的度數(shù):

②判斷線段之間的數(shù)量關(guān)系(直接寫出結(jié)果即可).

解決問題:如圖3,均為等腰三角形,,點(diǎn)在同一直線上,連接.的度數(shù)(用含的代數(shù)式表示,直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A1,0),B0,2),以AB為邊在第一象限內(nèi)作正方形ABCD直線CD與y軸交于點(diǎn)G,再以DG為邊在第一象限內(nèi)作正方形DEFG,若反比例函數(shù)的圖像經(jīng)過點(diǎn)E,則k的值是 ( )

A33B34C35D36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c.

(Ⅰ)若拋物線的頂點(diǎn)為A(﹣2,﹣4),拋物線經(jīng)過點(diǎn)B(﹣4,0)

①求該拋物線的解析式;

②連接AB,把AB所在直線沿y軸向上平移,使它經(jīng)過原點(diǎn)O,得到直線l,點(diǎn)P是直線l上一動(dòng)點(diǎn).

設(shè)以點(diǎn)A,B,O,P為頂點(diǎn)的四邊形的面積為S,點(diǎn)P的橫坐標(biāo)為x,當(dāng)4+6≤S≤6+8時(shí),求x的取值范圍;

(Ⅱ)若a>0,c>1,當(dāng)x=c時(shí),y=0,當(dāng)0<x<c時(shí),y>0,試比較ac與l的大小,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案