如圖,拋物線y=mx2―2mx―3m(m>0)與x軸交于A、B兩點, 與y軸交于C點.
(1)請求拋物線頂點M的坐標(用含m的代數(shù)式表示),A,B兩點的坐標;
(2)經(jīng)探究可知,△BCM與△ABC的面積比不變,試求出這個比值;
(3)是否存在使△BCM為直角三角形的拋物線?若存在,請求出;如果不存在,請說明理由..
解:(1)∵y=mx2―2mx―3m=m(x2―2x―3)=m(x-1)2―4m,
∴拋物線頂點M的坐標為(1,―4m)···················································································· 2分
∵拋物線y=mx2―2mx―3m(m>0)與x軸交于A、B兩點,
∴當y=0時,mx2―2mx―3m=0,∵m>0,∴x2―2x―3=0,解得x1=-1,x,2=3,
∴A,B兩點的坐標為(-1,0)、(3,0).·················································································· 4分
(2)當x=0時,y=―3m,∴點C的坐標為(0,-3m),
∴S△ABC=×|3-(-1)|×|-3m|=6|m|=6m,····································································· 5分
過點M作MD⊥x軸于D,則OD=1,BD=OB-OD=2,MD=|-4m |=4m.
∴S△BCM=S△BDM +S梯形OCMD-S△OBC
=BD·DM+(OC+DM)·OD-OB·OC
=×2×4m+(3m+4m)×1-×3×3m=3m,························································· 7分
∴ S△BCM:S△ABC=1∶2.·································································································· 8分
(3)存在使△BCM為直角三角形的拋物線.
過點C作CN⊥DM于點N,則△CMN為Rt△,CN=OD=1,DN=OC=3m,
∴MN=DM-DN=m,
∴CM2=CN2+MN2=1+m2,
在Rt△OBC中,BC2=OB2+OC2=9+9m2,
在Rt△BDM中,BM2=BD2+DM2=4+16m2.
①如果△BCM是Rt△,且∠BMC=90°時,CM2+BM2=BC2,
即1+m2+4+16m2=9+9m2,
解得 m=±,
∵m>0,∴m=.
∴存在拋物線y=x2-x-使得△BCM是Rt△;··········································· 10分
②①如果△BCM是Rt△,且∠BCM=90°時,BC2+CM2=BM2.
即9+9m2+1+m2=4+16m2,
解得 m=±1,
∵m>0,∴m=1.
∴存在拋物線y=x2-2x-3使得△BCM是Rt△;
③如果△BCM是Rt△,且∠CBM=90°時,BC2+BM2=CM2.
即9+9m2+4+16m2=1+m2,
整理得 m2=-,此方程無解,
∴以∠CBM為直角的直角三角形不存在.
(或∵9+9m2>1+m2,4+16m2>1+m2,∴以∠CBM為直角的直角三角形不存在.)
綜上的所述,存在拋物線y=x2-x-和y=x2-2x-3使得△BCM是Rt△.
科目:初中數(shù)學(xué) 來源:山東省德州地區(qū)2012屆九年級學(xué)業(yè)水平模擬考試數(shù)學(xué)試題 題型:044
如圖,拋物線y=x2+mx+n過原點O,與x軸交于A,點D(4,2)在該拋物線上,過點D作CD∥x軸,交拋物線于點C,交y軸于點B,連結(jié)CO、AD.
(1)求C點的坐標及拋物線的解析式;
(2)將△BCO繞點O按順時針旋轉(zhuǎn)90°后再沿x軸對折得到△OEF(點C與點E對應(yīng)),判斷點E是否落在拋物線上,并說明理由;
(3)設(shè)過點E的直線交OA于點P,交CD邊于點Q.問是否存在點P,使直線PQ分梯形AOCD的面積為1∶3兩部分?若存在,求出P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標系中,拋物線y=x2+mx+n經(jīng)過點A(3,0)、
B(0,-3),點P是直線AB上的動點,過點P作x軸的垂線交拋物線于點M,設(shè)點P的橫
坐標為t.
(1)分別求出直線AB和這條拋物線的解析式.
(2)若點P在第四象限,連接AM、BM,當線段PM最長時,求△ABM的面積.
(3)是否存在這樣的點P,使得以點P、M、B、O為頂點的四邊形為平行四邊形?若存在,請直接寫出點P的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆江蘇省南通市海安縣九年級學(xué)業(yè)水平測試(一模)數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,拋物線y=-x2+mx+n與x軸分別交于點A(4,0),B(-2,0),與y軸交于點C.
(1)求該拋物線的解析式;
(2)M為第一象限內(nèi)拋物線上一動點,點M在何處時,△ACM的面積最大;
(3)在拋物線的對稱軸上是否存在這樣的點P,使得△PAC為直角三角形?若存在,請求出所有可能點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通市海安縣九年級學(xué)業(yè)水平測試(一模)數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,拋物線y=-x2+mx+n與x軸分別交于點A(4,0),B(-2,0),與y軸交于點C.
(1)求該拋物線的解析式;
(2)M為第一象限內(nèi)拋物線上一動點,點M在何處時,△ACM的面積最大;
(3)在拋物線的對稱軸上是否存在這樣的點P,使得△PAC為直角三角形?若存在,請求出所有可能點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線y=x2+mx+n交x軸于A、B兩點,直線y=kx+b經(jīng)過點A,與這條拋物線的對稱軸交于點M(1,2),且點M與拋物線的頂點N關(guān)于x軸對稱.
(1)求這條拋物線的函數(shù)關(guān)系式;
(2)設(shè)題中的拋物線與直線的另一交點為C,已知P為線段AC上一點(不含端點),過點P作PQ⊥x軸,交拋物線于點Q,試證明:當P為AC的中點時,線段PQ的長取得最大值,并求出PQ的最大值;
(3)設(shè)D、E為直線AC上的兩點(不與A、C重合),且D在E的左側(cè),DE=2,過點D作DF⊥x軸交拋物線于點F,過點E作EG⊥x軸交拋物線于點G.問:是否存在這樣的點D,使得以D、E、F、G為頂點的四邊形為平行四邊形?若存在,請求出所有符合條件的點D的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com