【題目】已知點P(2,6)在反比例函數(shù)()的圖象上.
(1)當(dāng)時,求的值;(2)當(dāng)時,求的取值范圍.
【答案】(1)當(dāng)x=3時,y=4.(2)當(dāng)1<x<3時,y的取值范圍為4<y<12.
【解析】
(1)將點P(2,6)的坐標(biāo)代入反比例函數(shù)的解析式,可以求得比例系數(shù)k,從而確定反比例函數(shù)的解析式,再進(jìn)一步求得當(dāng)x=-3時,y的值;
(2)可以借助函數(shù)圖象的特點,確定當(dāng)1<x<3時函數(shù)y的取值范圍.其關(guān)鍵是求出橫坐標(biāo)分別是1和3的函數(shù)值.
(1)∵點P(2,6)在反比例函數(shù)的圖象上,
∴,即k=12,
∴反比例函數(shù)的解析式為.
∴當(dāng)x=3時,y=4.
(2)∵當(dāng)x=1時,y=12;當(dāng)x=3時,y=4,
又反比例函數(shù),在x>0時,y值隨x值的增大而減小,
∴當(dāng)1<x<3時,y的取值范圍為4<y<12.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與x軸交于A,B兩點,與y軸交于點C,的半徑為,P為上一動點.
點B,C的坐標(biāo)分別為______,______;
是否存在點P,使得為直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
連接PB,若E為PB的中點,連接OE,則OE的最大值______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的關(guān)系是___;
(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=10cm,BC=20cm,點P從A開始沿AB邊向B點以1cm/s的速度移動,到達(dá)點B時停止.點Q從點B開始沿BC邊向C點以2cm/s的速度移動,到達(dá)點C時停止.如果P、Q分別從A、B同時出發(fā),經(jīng)幾秒種△PBQ與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】整頓藥品市場、降低藥品價格是國家的惠民政策之一.根據(jù)國家《藥品政府定價辦法》,某省有關(guān)部門規(guī)定:市場流通藥品的零售價格不得超過進(jìn)價的15%.根據(jù)相關(guān)信息解決下列問題:
(1)降價前,甲乙兩種藥品每盒的出廠價格之和為6.6元.經(jīng)過若干中間環(huán)節(jié),甲種藥品每盒的零售價格比出廠價格的5倍少2.2元,乙種藥品每盒的零售價格是出廠價格的6倍,兩種藥品每盒的零售價格之和為33.8元.那么降價前甲、乙兩種藥品每盒的零售價格分別是多少元?
(2)降價后,某藥品經(jīng)銷商將上述的甲、乙兩種藥品分別以每盒8元和5元的價格銷售給醫(yī)院,醫(yī)院根據(jù)實際情況決定:對甲種藥品每盒加價15%、對乙種藥品每盒加價10%后零售給患者.實際進(jìn)藥時,這兩種藥品均以每10盒為1箱進(jìn)行包裝.近期該醫(yī)院準(zhǔn)備從經(jīng)銷商處購進(jìn)甲乙兩種藥品共100箱,其中乙種藥品不少于40箱,銷售這批藥品的總利潤不低于900元.請問購進(jìn)時有哪幾種搭配方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與x軸交點的橫坐標(biāo)分別為x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列結(jié)論:①4a﹣2b+c<0;②2a﹣b<0;③a<0;④b2+8a>4ac,其中正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,AB=AC,點D是BC上一動點,連接AD,過點A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD ≌△ACE ;
(2)若AF平分∠DAE交BC于F,探究線段BD,DF,F(xiàn)C之間的數(shù)量關(guān)系,并證明;
(3)在(2)的條件下,若BD=3,CF=4,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BD,CF⊥BD,E,F分別為垂足.
(1)求證:四邊形AECF是平行四邊形;
(2)如果AE=3,EF=4,求AF、EC所在直線的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在□ABCD中,線段EF分別交AD、AC、BC于點E、O、F,EF⊥AC,AO=CO.
(1)求證:△AOE≌△COF;
(2)在本題的已知條件中,有一個條件如果去掉,并不影響(1)的證明,你認(rèn)為這個多余的條件是 (直接寫出這個條件).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com