【題目】已知:如圖,在ABCD中,點(diǎn)E、F分別在AD、BC上,EF與BD相交于點(diǎn)O,AE=CF.
(1)求證:OE=OF;
(2)連接BE、DF,若BD平分∠EBF,試判斷四邊形EBFD的形狀,并給予證明.
【答案】(1)詳見解析;(2)四邊形EBFD是菱形
【解析】
(1)連接BE、DF,證明四邊形EBFD為平行四邊形,根據(jù)平行四邊形的性質(zhì)即可求解.
(2)根據(jù)BD平分∠EBF,可得∠1=∠2,由平行線的性質(zhì)可得∠3=∠2,等量代換可得∠1=∠3,即可證明BE=ED,即可判定四邊形EBFD的形狀.
解:(1)證明:連接BE、DF,
∵四邊形ABCD為平行四邊形,
∴AD=BC,AD∥BC,
又∵AE=CF,
∴DE=BF,
∴四邊形EBFD為平行四邊形,
∴OE=OF;
(2)解:四邊形EBFD是菱形.理由如下:
∵BD平分∠EBF,
∴∠1=∠2,
∵AD∥BC,
∴∠3=∠2,
∴∠1=∠3,
∴BE=ED,
∴平行四邊形EBFD是菱形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店用6000元購進(jìn)A,B兩種新式服裝,按標(biāo)價售出后可獲得毛利潤3800元(毛利潤=售價-進(jìn)價).這兩種服裝的進(jìn)價,標(biāo)價如表所示.
(1)求這兩種服裝各購進(jìn)的件數(shù);
(2)如果A種服裝按標(biāo)價的8折出售,B種服裝按標(biāo)價的7折出售,那么這批服裝全部售完后,服裝店比按標(biāo)價出售少收入多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】知識再現(xiàn):已知,如圖,四邊形ABCD是正方形,點(diǎn)M、N分別在邊BC、CD上,連接AM、AN、MN,∠MAN=45°,延長CB至G使BG=DN,連接AG,根據(jù)三角形全等的知識,我們可以證明MN=BM+DN.
知識探究:(1)在如圖中,作AH⊥MN,垂足為點(diǎn)H,猜想AH與AB有什么數(shù)量關(guān)系?并證明;
知識應(yīng)用:(2)如圖,已知∠BAC=45°,AD⊥BC于點(diǎn)D,且BD=2,AD=6,則CD的長為 ;
知識拓展:(3)如圖,四邊形ABCD是正方形,E是邊BC的中點(diǎn),F為邊CD上一點(diǎn),∠FEC=2∠BAE,AB=24,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小明分別從相距30公里的甲、乙兩地同時出發(fā)相向而行,小聰騎摩托車到達(dá)乙地后立即返回甲地,小明騎自行車從乙地直接到達(dá)甲地,函數(shù)圖象y1(km)和y2(km)分別表示小聰離甲地的距離和小明離乙地的距離與已用時間t(h)之間的關(guān)系,如圖所示.下列說法:①折線段OAB是表示小聰?shù)暮瘮?shù)圖象y1,線段OC是表示小明的函數(shù)圖象y2;②小聰去乙地和返回甲地的平均速度相同;③兩人在出發(fā)80分鐘后第一次相遇;④小明騎自行車的平均速度為15km/h,其中不正確的個數(shù)為( 。
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),正方形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(2,2),反比例函數(shù)(x>0,k≠0)的圖象經(jīng)過線段BC的中點(diǎn)D.
(1)求k的值;
(2)若點(diǎn)P(x,y)在該反比例函數(shù)的圖象上運(yùn)動(不與點(diǎn)D重合),過點(diǎn)P作PR⊥y軸于點(diǎn)R,作PQ⊥BC所在直線于點(diǎn)Q,記四邊形CQPR的面積為S,求S關(guān)于x的解析式并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:(1)如果 ,那么點(diǎn) 是線段 的中點(diǎn);(2)相等的兩個角是對頂角;(3)直角三角形的兩個銳角互余;(4)同位角相等;(5)兩點(diǎn)之間,直線最短.其中真命題的個數(shù)有( )
A.1 個B.2 個C.3 個D.4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司有A、B兩種型號的客車共20輛,它們的載客量、每天的租金如表所示.已知在20輛客車都坐滿的情況下,共載客720人.
A型號客車 | B型號客車 | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 600 | 450 |
(1)求A、B兩種型號的客車各有多少輛?
(2)某中學(xué)計劃租用A、B兩種型號的客車共8輛,同時送七年級師生到沙家浜參加社會實踐活動,已知該中學(xué)租車的總費(fèi)用不超過4600元.
①求最多能租用多少輛A型號客車?
②若七年級的師生共有305人,請寫出所有可能的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B分別是x軸上位于原點(diǎn)左右兩側(cè)的點(diǎn),點(diǎn)P(2,p)在第一象限,直線PA交y軸于點(diǎn)C(0,3),直線PB交y軸于點(diǎn)D,△AOP的面積為12;
(1)求△COP的面積;
(2)求點(diǎn)A的坐標(biāo)及p的值;
(3)若△BOP與△DOP的面積相等,求直線BD的函數(shù)解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com