【題目】如圖,A、B分別是x軸上位于原點(diǎn)左右兩側(cè)的點(diǎn),點(diǎn)P(2,p)在第一象限,直線PA交y軸于點(diǎn)C(0,3),直線PB交y軸于點(diǎn)D,△AOP的面積為12;
(1)求△COP的面積;
(2)求點(diǎn)A的坐標(biāo)及p的值;
(3)若△BOP與△DOP的面積相等,求直線BD的函數(shù)解析式.
【答案】(1);(2);(3)y=-2x+8.
【解析】
(1)已知P的橫坐標(biāo),即可知道△OCP的邊OC上的高長,利用三角形的面積公式即可求解;
(2)求得△AOC的面積,即可求得A的坐標(biāo),利用待定系數(shù)法即可求得AP的解析式,把x=2代入解析式即可求得p的值;
(3)利用三角形面積公式由S△BOP=S△DOP,PB=PD,即點(diǎn)P為BD的中點(diǎn),則可確定B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,8),然后利用待定系數(shù)法確定直線BD的解析式.
(1)作PE⊥y軸于E,
∵P的橫坐標(biāo)是2,則PE=2.
∴S△COP=OCPE=×3×2=3;
(2)∴S△AOC=S△AOP-S△COP=12-3=9,
∴S△AOC=OAOC=9,即×OA×3=9,
∴OA=6,
∴A的坐標(biāo)是(-6,0).
設(shè)直線AP的解析式是y=kx+b,則
,
解得:.
則直線AP的解析式是y=x+3.
當(dāng)x=2時(shí),y=4,即p=4;
(3)∵S△BOP=S△DOP,
∴PB=PD,即點(diǎn)P為BD的中點(diǎn),
∴B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,8),
設(shè)直線BD的解析式為y=mx+n,
把B(4,0),D(0,8)代入得
,解得,
∴直線BD的解析式為:y=-2x+8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,點(diǎn)E、F分別在AD、BC上,EF與BD相交于點(diǎn)O,AE=CF.
(1)求證:OE=OF;
(2)連接BE、DF,若BD平分∠EBF,試判斷四邊形EBFD的形狀,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上作一個(gè)菱形.甲、乙兩人的作法如下:
甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據(jù)兩人的作法可判斷
A.甲正確,乙錯(cuò)誤 B.乙正確,甲錯(cuò)誤 C.甲、乙均正確 D.甲、乙均錯(cuò)誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)有一片樹林,不僅樹種相同,而且排列有序,如果用平面直角坐標(biāo)系來表示每一棵的具體位置,從第一棵樹開始依次表示為(1,0)→(2,0)→(2,1)→(3,2)→(3,1)→(3,0)→(4.0)→……,則第100棵樹的位置是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,x=是該拋物線的對稱軸,根據(jù)圖中所提供的信息,請寫出有關(guān)a,b,c的四條結(jié)論,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)角度是 度;
(2)若連結(jié)EF,則△AEF是 三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠計(jì)劃生產(chǎn)兩種產(chǎn)品共10件,其生產(chǎn)成本和銷售價(jià)如下表所示:
產(chǎn)品 | 種產(chǎn)品 | 種產(chǎn)品 |
成本(萬元/件) | 3 | 5 |
售價(jià)(萬元/件) | 4 | 7 |
(1)若工廠計(jì)劃獲利14萬元,則應(yīng)分別生產(chǎn)兩種產(chǎn)品多少件?
(2)若工廠投入資金不多于44萬元,且獲利不少于14萬元,則工廠有哪些生產(chǎn)方案?
(3)在第(2)的條件下,哪種方案獲利最大;最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖一:中,平分,CO平分外角.
(1)①若,則的度數(shù)為________.
②若,則的度數(shù)為________.
(2)試寫出與的關(guān)系,并加以證明.
(3)解決問題,如圖二,平分,平分, 依此類推,平分,平分,平分, 依此類推,平分,若,請根據(jù)第(2)間中得到的結(jié)論直接寫出的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織部分學(xué)參加安全知識競賽,并將成績整理后繪制成直方圖,圖中從左至右前四組的百分比分別是4%,12%,40%,28%,第五組的頻數(shù)是8.則:①參加本次競賽的學(xué)生共有100人;②第五組的百分比為16%;③成績在70-80分的人數(shù)最多;④80分以上的學(xué)生有14名;其中正確的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com