【題目】如圖1,骰子有六個面并分別標有數(shù)1,2,3,4,5,6,如圖2,正六邊形頂點處各有一個圈,跳圈游戲的規(guī)則為:游戲者擲一次骰子,骰子向上的一面上的數(shù)字是幾,就沿正六邊形的邊順時針方向連續(xù)跳幾個邊長.
如:若從圈起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落到圈;若第二次擲得2,就從開始順時針連續(xù)跳2個邊長,落到圈;……設游戲者從圈起跳.
(1)小明隨機擲一次骰子,求落回到圈的概率;
(2)小亮隨機擲兩次骰子,用列表法或畫樹狀圖法求最后落回到圈的概率,并指出他與小明落回到圈的可能性一樣嗎?
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1 的矩形中,有一點在上,現(xiàn)以為折線將點往右折,如圖2所示,再過點作于點,如圖3所示,若, 則圖3中的長度為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E、F分別是正方形ABCD的邊BC、CD的中點,連接AF、DE交于點P,過B作BG∥DE交AD于G,BG與AF交于點M.對于下列結論:①AF⊥DE;②G是AD的中點;③∠GBP=∠BPE;④S△AGM:S△DEC=1:4.正確的個數(shù)是( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=3,BC=2,沿對角線AC剪開(如圖①);固定△ADC,把△ABC沿AD方向平移(如圖②),當兩個三角形重疊部分的面積最大時,移動的距離AA′等于( )
A. 1 B. 1.5 C. 2 D. 0.8或1.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】無錫水蜜桃享譽海內(nèi)外,老王用3000元購進了一批水蜜桃.第一天,很快以比進價高40% 的價格賣出150千克.第二天,他發(fā)現(xiàn)剩余的水蜜桃賣相已不太好,于是果斷地以比進價低20%的價格將剩余的水蜜桃全部售出,本次生意老王一共獲利750元.
(1)根據(jù)以上信息,請你編制一個問題,并給予解答;
(2)老王用3000元按第一次的價格又購進了一批水蜜桃.第一天同樣以比進價高40% 的價格賣出150千克,第二天,老王把賣相不好的水蜜桃挑出,單獨打折銷售,售價為10元/千克,結果很快被一搶而空,其余的仍按第一天的價格銷售,且當天全部售完.若老王這次至少獲利1100元,請問打折銷售的水蜜桃最多多少千克?(精確到1千克.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一平面直角坐標系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明的爸爸想給媽媽送張美容卡作為生日禮物,小明家附近有 3 家美容店,爸爸不知 如何選擇,于是讓小明對 3 家店鋪顧客的滿意度做了調(diào)查:
合計 | ||||
美容店 A | 53 | 28 | 19 | 100 |
美容店 B | 50 | 40 | 10 | 100 |
美容店 C | 65 | 26 | 9 | 100 |
(說明:顧客對于店鋪的滿意度從高到低,依次為 3 個笑臉,2 個笑臉,1 個笑臉) 小明選擇將_____(填“A”、“ B”或“C”)美容店推薦給爸爸,能使媽媽獲得滿意體驗可能性最大.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】墊球是排球隊常規(guī)訓練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1分.
運動員丙測試成績統(tǒng)計表
測試序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(分) | 7 | 6 | 8 | 7 | 5 | 8 | 8 | 7 |
運動員丙測試成績的平均數(shù)和眾數(shù)都是7,
(1)成績表中的__________,_________;
(2)若在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認為選誰更合適?請用你所學過的統(tǒng)計量加以分析說明(參考數(shù)據(jù):三人成績的方差分別為、、)
(3)甲、乙、丙三人相互之間進行墊球練習,每個人的球都等可能的傳給其他兩人,球從乙手中傳出,球傳一次甲得到球的概率是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AF為⊙O的直徑,點B在AF的延長線上,BE切⊙O于點E,過點A作AC⊥BE,交BE的延長線交于點C,交⊙O交于點D,連接AE,EF,FD,DE.
(1)求證:EF=ED.
(2)求證:DFAF=2AEEF.
(3)若AE=4,DE=2,求sin∠DFA的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com