【題目】如圖,已知四邊形ABCD中,∠B=60°,邊AB=BC=8cm,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速運(yùn)動(dòng),其中點(diǎn)P運(yùn)動(dòng)的速度是每秒1cm,點(diǎn)Q運(yùn)動(dòng)的速度是每秒2cm,當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
解答下列問(wèn)題:
(1)AP= ,BP= ,BQ= .(用含t的代數(shù)式表示,t≤4)
(2)當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),PQ與AB的位置關(guān)系如何?請(qǐng)說(shuō)明理由.
(3)在點(diǎn)P與點(diǎn)Q的運(yùn)動(dòng)過(guò)程中,△BPQ是否能成為等邊三角形?若能,請(qǐng)求出t,若不能,請(qǐng)說(shuō)明理由.
【答案】(1)t,8﹣t,2t;(2)PQ⊥AB,理由見(jiàn)解析;(3)△BPQ能成為等邊三角形,t=.
【解析】
(1)根據(jù)點(diǎn)P、Q的運(yùn)動(dòng)速度解答;
(2)連接AC,得到△ABC為等邊三角形,根據(jù)等腰三角形的三線合一證明;
(3)根據(jù)等邊三角形的判定定理列出方程,解方程即可.
(1)由題意得:AP=t,BP=8﹣t,BQ=2t.
故答案為:t;8﹣t;2t;
(2)PQ⊥AB.理由如下:
連接AC.
∵∠B=60°,AB=BC,∴△ABC為等邊三角形.
∵點(diǎn)Q到達(dá)點(diǎn)C時(shí),BQ=BC=8cm,AP=4,∴P為AB的中點(diǎn),∴PQ⊥AB;
(3)△BPQ能成為等邊三角形.
∵∠B=60°,∴當(dāng)BP=BQ時(shí),△BPQ能成為等邊三角形,此時(shí),8﹣t=2t,解得:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AC是⊙O的直徑,∠C=50°,∠ABC的平分線BD交⊙O于點(diǎn)D,則∠BAD的度數(shù)是( )
A.45°
B.85°
C.90°
D.95°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x,y的方程組 ,其中﹣3≤a≤1,給出下列結(jié)論:
① 是方程組的解;
②當(dāng)a=﹣2時(shí),x,y的值互為相反數(shù);
③當(dāng)a=1時(shí),方程組的解也是方程x+y=4﹣a的解;
④若x≤1,則1≤y≤4.
其中正確的是( )
A.①②
B.②③
C.②③④
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】特例探究:如圖①,已知在△ABC中,AB=BC,∠ABC=90°,D為AC邊的中點(diǎn),連接BD,判斷△ABD是什么三角形,并說(shuō)明理由.
歸納證明:如圖②,已知在△ABC中,AB=BC,∠ABC=90°,D為AC邊的中點(diǎn),連接BD,把Rt△DEF的直角頂點(diǎn)D放在AC的中點(diǎn)上,DE交AB于M,DF交BC于N.證明:DM=DN.
拓展應(yīng)用:在圖②,AC=4,其他條件都不發(fā)生變化,請(qǐng)直接寫出Rt△DEF與△ABC的重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=﹣2x的圖象與二次函數(shù)y=﹣x2+3x圖象的對(duì)稱軸交于點(diǎn)B.
(1)寫出點(diǎn)B的坐標(biāo);
(2)已知點(diǎn)P是二次函數(shù)y=﹣x2+3x圖象在y軸右側(cè)部分上的一個(gè)動(dòng)點(diǎn),將直線y=﹣2x沿y軸向上平移,分別交x軸、y軸于C、D兩點(diǎn).若以CD為直角邊的△PCD與△OCD相似,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角三角形ABC中,∠BAC=60°,BF,CE為高,點(diǎn)D為BC的中點(diǎn),連接EF,ED,F(xiàn)D,有下列四個(gè)結(jié)論:①ED=FD;②∠ABC=60°時(shí),EF∥BC;③BF=2AF;④AF:AB=AE:AC.其中正確的個(gè)數(shù)有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市九年級(jí)學(xué)生學(xué)業(yè)考試體育成績(jī),現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績(jī)進(jìn)行分段統(tǒng)計(jì)如下:
學(xué)業(yè)考試體育成績(jī)(分?jǐn)?shù)段)統(tǒng)計(jì)表 | ||
分?jǐn)?shù)段 | 人數(shù)(人) | 頻率 |
A | 48 | 0.2 |
B | a | 0.25 |
C | 84 | 0.35 |
D | 36 | b |
E | 12 | 0.05 |
分?jǐn)?shù)段為:(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)
根據(jù)上面提供的信息,回答下列問(wèn)題:
(1)在統(tǒng)計(jì)表中,a的值為 , b的值為 ,
(2)將統(tǒng)計(jì)圖補(bǔ)充完整(溫馨提示:作圖時(shí)別忘了用0.5毫米及以上的黑色簽字筆涂黑);
(3)甲同學(xué)說(shuō):“我的體育成績(jī)是此次抽樣調(diào)查所得數(shù)據(jù)的中位數(shù).”請(qǐng)問(wèn):甲同學(xué)的體育成績(jī)應(yīng)在什么分?jǐn)?shù)段內(nèi)?(填相應(yīng)分?jǐn)?shù)段的字母)
(4)如果把成績(jī)?cè)?0分以上(含40分)定為優(yōu)秀,那么該市今年10440名九年級(jí)學(xué)生中體育成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測(cè)試,測(cè)試結(jié)果分為A、B、C、D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)求本次測(cè)試共調(diào)查了多少名學(xué)生?
(2)求本次測(cè)試結(jié)果為B等級(jí)的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)請(qǐng)你計(jì)算扇形統(tǒng)計(jì)圖中八年級(jí)學(xué)生體能測(cè)試結(jié)果為D等級(jí)的扇形圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿折線A﹣C﹣B﹣A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)若點(diǎn)P在AC上,且滿足PA=PB時(shí),求出此時(shí)t的值;
(2)若點(diǎn)P恰好在∠BAC的角平分線上,求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com