【題目】如圖,已知正方形ABCD的邊長為1,P是對角線AC上任意一點,E為AD上的點,且∠EPB=90°,PM⊥AD,PN⊥AB.
(1)求證:四邊形PMAN是正方形;
(2)求證:EM=BN;
(3)若點P在線段AC上移動,其他不變,設(shè)PC=x,AE=y,求y關(guān)于x的解析式,并寫出自變量x的取值范圍.
【答案】(1)見解析;(2)見解析;(3)y=1-(0≤x≤).
【解析】
(1)由四邊形ABCD是正方形,易得∠BAD=90°,AC平分∠BAD,又由PM⊥AD,PN⊥AB,即可證得四邊形PMAN是正方形;
(2)由四邊形PMAN是正方形,易證得△EPM≌△BPN,即可證得:EM=BN;
(3)首先過P作PF⊥BC于F,易得△PCF是等腰直角三角形,繼而證得△APM是等腰直角三角形,可得AP=AM=(AE+EM),繼而求得答案.
(1).∵正方形ABCD,
∴∠NAM=90.
又因為PM⊥AD,PN⊥AB,
∴∠ANP=∠AMP=90,
∴四邊形PMAN是矩形(有三個角是直角).
∵P在AC上,
∴PM=PN(角平分線上的點到這條線段兩邊的距離相等),
∴四邊形PMAN是正方形;
(2).∵∠EPB=90,
∴∠BPN+∠APN=90.
∵∠EPM=∠APN=90,
∴∠BPN=∠EPM,
在△BPN與△EPM中
∠BPN=∠EPM,PN=PM,∠BNP=∠EMP,
∴△BPN≌△EPM,
∴BN=EM;
(3)過P作PF⊥BC于F,如圖所示:
∵四邊形ABCD是正方形,
∴∠ABC=90°,AB=BC=1,∠PCF=45°,
∴AC=,△PCF是等腰直角三角形,
∴AP=AC-PC=-x,BN=PF=,
∴EM=BN=,
∵∠PAM=45°,∠PMA=90°,
∴△APM是等腰直角三角形,
∴AP=AM=(AE+EM),
即-x=(y+),
解得:y=1-x,
∴x的取值范圍為0≤x≤,
∴y=1-x(0≤x≤).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點A(2,3)在函數(shù)y=kx的圖象上,則下列各點在此麗數(shù)圖象上的是( )
A.(1,)B.(2,-3)C.(4,5)D.(-2,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是面積為4的等邊三角形,△ABC∽△ADE,
AB=2AD,∠BAD=45°,AC與DE相交于點F,則△AEF的面積
等于___(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《如果想毀掉一個孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 年9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開展了“手機(jī)伴我健康行”主題活動,他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時間”的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計圖,已知“查資料”的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計圖中,“玩游戲”對應(yīng)的百分比為______,圓心角度數(shù)是______度;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)該校共有學(xué)生2100人,估計每周使用手機(jī)時間在2 小時以上(不含2小時)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=x+4與x軸、y軸分別交于點A和點B,點C,D分別為線段AB,OB的中點,點P為OA上一動點,PC+PD值最小時點P的坐標(biāo)為.
A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過點A0,2的直線l1:y1kxbk0與直線l2:y2x1交于點P2,m。
(1)求點P的坐標(biāo)和直線l1的解析式;
(2)直接寫出使得y1y2的x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于點Pa,b和點Qa,b,給出如下定義:若,則稱點Q為點P的限變點,例如:點(2,3)的限變點的坐標(biāo)是(2,3),點2,5的限變點的坐標(biāo)是2,5。
(1)在點A2,1,B1,2中有一個點是函數(shù)y=圖象上某一個點的限變點,這個點是 ;
(2)求點,1的限變點的坐標(biāo);
(3)若點P在函數(shù)yx32xk,k2的圖象上,其限變點Q的縱坐標(biāo)b的取值范圍是5b2,求k的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∥,BE∥CF,BA⊥,DC⊥,下面給出四個結(jié)論:①BE=CF;②AB=DC;③;
④四邊形ABCD是矩形.其中說法正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com