【題目】某超市銷售一種飲料,平均每天可售出100箱,每箱利潤為120元,為了擴大銷量,盡快減少庫存,超市準備適當降價,據(jù)測算,若每箱降價2元,則每天可多售出4箱.
(1)如果要使每天銷售該飲料獲利14000元,則每箱應降價多少元.
(2)每天銷售該飲料獲利能達到14500元嗎?若能,則每箱應降價多少?若不能,請說明理由.
【答案】(1)50;(2)不能,理由詳見解析.
【解析】
試題分析:(1)此題利用的數(shù)量關系:銷售每箱飲料的利潤×銷售總箱數(shù)=銷售總利潤,由此列方程解答即可;
(2)根據(jù)題意列出方程,然后用根的判別式去驗證.
試題解析:(1)要使每天銷售飲料獲利14000元,每箱應降價x元,
依據(jù)題意列方程得,(120﹣x)(100+2x)=14000,
整理得﹣70x+1000=0,
解得=20,=50,
∵為了擴大銷量,盡快減少庫存,
∴x=50.
答:每箱應降價50元,可使每天銷售飲料獲利14000元;
(2)由題意得:(120﹣x)(100+2x)=14500,
整理得﹣70x+1250=0,
∵△=﹣4×1250<0,
∴此方程無實數(shù)根,
故該超市每天銷售這種飲料的獲利不可能達14500元.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,(1)﹣a 一定是負數(shù);(2)|﹣a|一定是正數(shù);(3)倒數(shù)等于它本身的數(shù)是±1;(4)絕對值等于它本身的數(shù)是 1.其中正確的個數(shù)是( )
A. 1 個 B. 2 個 C. 3 個 D. 4 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,O為邊AB上的一點,以O為圓心,以OA為半徑,作⊙O,交AB于點D,交AC于點E,交BC于點F,且點F恰好是ED的中點,連接DF.
(1)求證:BC是⊙O的切線;
(2)若⊙O的直徑為10,AE=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結BD、DP,BD與CF相交于點H.給出下列結論:①△BDE∽△DPE;②;③=PHPB;④tan∠DBE=.其中正確結論的序號是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ACD的外接圓,AB是直徑,過點D作直線DE∥AB,過點B作直線BE∥AD,兩直線交于點E,如果∠ACD=45°,⊙O的半徑是4cm,
(1)請判斷DE與⊙O的位置關系,并說明理由;
(2)求圖中陰影部分的面積(結果用π表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com