【題目】如圖,菱形ABCD中,ABAC,點E、F分別為邊AB、BC上的點且AEBF,連接CE、AF交于點H,連接DHAG于點O,則下列結論①△ABF≌△CAE;②∠AHC120°;③AE+CHCD,中正確的是____

【答案】①②③

【解析】

由菱形的性質得出CDABBC,由ABAC,推出ABBCAC,即△ABC是等邊三角形,同理可得△ADC是等邊三角形,則∠B=∠EAC60°,由SAS即可證得△ABF≌△CAE;得出∠BAF=∠ACE,由外角性質得出∠AEH=∠B+BCE,由外角性質得出∠AHC=∠BAF+AEH即可得出結果;由△ABF≌△CAE得出AEBF,由∠AHC120°得出∠CHF60°,由△ABC是等邊三角形得出∠ACB60°,則∠HCF60°,推出∠HFC60°,則∠HFC>∠CHF得出CHFC,即可得出結果.

∵四邊形ABCD是菱形,

CDABBC,

ABAC

ABBCAC,

即△ABC是等邊三角形,

同理:△ADC是等邊三角形,

∴∠B=∠EAC60°,

在△ABF和△CAE中,,

∴△ABF≌△CAESAS);

故①正確;

∴∠BAF=∠ACE,

∵∠AEH=∠B+BCE

∴∠AHC=∠BAF+AEH=∠BAF+B+BCE=∠B+ACE+BCE=∠B+ACB60°+60°120°

故②正確;

∵△ABF≌△CAE

AEBF,

∵∠AHC120°,

∴∠CHF60°,

∵△ABC是等邊三角形,

∴∠ACB60°,

∴∠HCF60°,

∴∠HFC60°,

∴∠HFC>∠CHF,

CHFC

CDBCBF+FCAE+FC

AE+CHAE+FC,

AE+CHCD;

故③正確;

故答案為①②③.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的立桿上點T處匯合.如圖所示為截面圖,以水平方向為x軸,噴水池中心為原點建立直角坐標系

(1)求水柱所在拋物線(第一象限部分)的函數(shù)解析式

(2)正在噴水時,身高1.8米的人,應站在離水池中心多遠的地方就能不被淋濕?

(3)在噴出水柱的形狀不變的前提下,把水池的直徑擴大到32米,各方向噴出的水柱仍在噴水池中心的立桿上點T處匯合,請?zhí)骄繑U建后噴水池水柱的最大高度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明同學在尋找下面圖中小圓圈個數(shù)的規(guī)律時,利用了下面圖中分塊計數(shù)法,根據(jù)小明的方法,猜想并判斷下列說法不正確的是( )

A.5個圖形有61個小圓圈B.6個圖形有91個小圓圈

C.某個圖小圓圈的個數(shù)可以為271D.某個圖小圓圈的個數(shù)可以為621

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,=5,=9=,動點出發(fā),沿射線方向以每秒5個單位長度的速度運動,動點點出發(fā),一相同的速度在線段上由運動,當點運動到點時,兩點同時停止運動,以為邊作正方形(按逆時針排序),以為邊在上方作正方形.

(1)_______.

(2)設點運動時間為,正方形的面積為,請?zhí)骄?/span>是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

(3)為何值時,正方形的某個頂點(點除外)落在正方形的邊上,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,∠B90°AB14cmAD15cm,BC21cm,點MA點開始,沿AD邊向D運動,速度為1厘米/秒,點N從點C開始沿CB邊向點B運動,速度為2厘米/秒,設四邊形MNCD的面積為S

1)寫出面積S與時間t之間的函數(shù)關系式;

2)當t為何值時,四邊形MNCD是平行四邊形?

3)當t為何值時,四邊形MNCD是等腰梯形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,拋物線)交x軸于AB兩點,交y軸于點C,且對稱軸為直線x=-2 .

(1)求該拋物線的解析式及頂點D的坐標;

(2)若點P(0,t)是y軸上的一個動點,請進行如下探究:

探究一:如圖1,設△PAD的面積為S,令Wt·S,當0<t<4時,W是否有最大值?如果有,求出W的最大值和此時t的值;如果沒有,說明理由;

探究二:如圖2,是否存在以P、A、D為頂點的三角形與RtAOC相似?如果存在,求點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形OP1A1Q1為長為2,且∠P160°,將菱形OP1A1Q1繞點A1順時針旋轉1800,得到菱形A1P2A2Q2,將菱形A1P2A2Q2繞點A2順時針旋轉180°,得到菱形A2P3A3Q3……,如此進行下去,直至得到菱形A8P9A9Q9,則:

1P1的坐標為_____;

2Q9的坐標為_____;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線分別交x軸,y軸于點AB,拋物線y=﹣x2+bx+c經過點A,B,點Px軸上一個動點,過點P作垂直于x軸的直線分別交拋物線和直線AB于點E和點F.設點P的橫坐標為m.

(1)求這條拋物線所對應的函數(shù)表達式.

(2)P在線段OA上時,若以B、E、F為頂點的三角形與△FPA相似,求m的值;

(3)EF、P三個點中恰有一點是其它兩點所連線段的中點(三點重合除外),稱EFP三點為共諸點”.直接寫出E、F、P三點成為共諸點m的值.

查看答案和解析>>

同步練習冊答案