【題目】已知四邊形ABCD是菱形(四條邊都相等的平行四邊形).AB=4,∠ABC=60°,∠EAF的兩邊分別與邊BC,DC相交于點(diǎn)E,F,且∠EAF=60°.
(1)如圖1,當(dāng)點(diǎn)E是線段CB的中點(diǎn)時(shí),直接寫(xiě)出線段AE,EF,AF之間的數(shù)量關(guān)系為: .
(2)如圖2,當(dāng)點(diǎn)E是線段CB上任意一點(diǎn)時(shí)(點(diǎn)E不與B,C重合),求證:BE=CF;
(3)求△AEF周長(zhǎng)的最小值.
【答案】(1)AE=EF=AF;(2)詳見(jiàn)解析;(3)6.
【解析】
(1)結(jié)論AE=EF=AF.只要證明AE=AF即可證明△AEF是等邊三角形;
(2)欲證明BE=CF,只要證明△BAE≌△CAF即可;
(3)根據(jù)垂線段最短可知;當(dāng)AE⊥BC時(shí),△AEF的周長(zhǎng)最;
(1)AE=EF=AF.
理由:如圖1中,連接AC,
∵四邊形ABCD是菱形,∠B=60°,
∴AB=BC=CD=AD,∠B=∠D=60°,
∴△ABC,△ADC是等邊三角形,
∴∠BAC=∠DAC=60°
∵BE=EC,
∴∠BAE=∠CAE=30°,AE⊥BC,
∵∠EAF=60°,
∴∠CAF=∠DAF=30°,
∴AF⊥CD,
∴AE=AF(菱形的高相等)
∴△AEF是等邊三角形,
∴AE=EF=AF.
故答案為AE=EF=AF;
(2)證明:如圖2,
∵∠BAC=∠EAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
∴△BAE≌△CAF(ASA)
∴BE=CF.
(3)由(1)可知△AEF是等邊三角形,
∴當(dāng)AE⊥BC時(shí),AE的長(zhǎng)最小,即△AEF的周長(zhǎng)最小,
∵AE=EF=AF=2,
∴△AEF的周長(zhǎng)為6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象如圖所示,給出下列說(shuō)法:
①;②方程的根為,;③;④當(dāng)時(shí),隨值的增大而增大;⑤當(dāng)時(shí),.其中,正確的說(shuō)法有________(請(qǐng)寫(xiě)出所有正確說(shuō)法的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一直角三角形紙片,邊,,,將該直角三角形紙片沿折疊,使點(diǎn)與點(diǎn)重合,則四邊形的周長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于點(diǎn)D,交AC于點(diǎn)E.
(1)求∠BAD的度數(shù);
(2)若AB=10,BC=12,求△ABD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△ABC的每一個(gè)頂點(diǎn)都在格點(diǎn)上,AB=5,點(diǎn)D是AB邊上的動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)A,B重合),將線段AD沿直線AC翻折后得到對(duì)應(yīng)線段AD1,將線段BD沿直線BC翻折后得到對(duì)應(yīng)線段BD2,連接D1D2,則四邊形D1ABD2的面積的最小值是 ____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究
(1)如圖①,已知正方形ABCD的邊長(zhǎng)為4.點(diǎn)M和N分別是邊BC、CD上兩點(diǎn),且BM=CN,連接AM和BN,交于點(diǎn)P.猜想AM與BN的位置關(guān)系,并證明你的結(jié)論.
(2)如圖②,已知正方形ABCD的邊長(zhǎng)為4.點(diǎn)M和N分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CD方向向終點(diǎn)C和D運(yùn)動(dòng).連接AM和BN,交于點(diǎn)P,求△APB周長(zhǎng)的最大值;
問(wèn)題解決
(3)如圖③,AC為邊長(zhǎng)為2的菱形ABCD的對(duì)角線,∠ABC=60°.點(diǎn)M和N分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CA向終點(diǎn)C和A運(yùn)動(dòng).連接AM和BN,交于點(diǎn)P.求△APB周長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,點(diǎn)、分別是等邊邊、上的點(diǎn),連接、,若,求證:
(2)如圖2,在(1)問(wèn)的條件下,點(diǎn)在的延長(zhǎng)線上,連接交延長(zhǎng)線于點(diǎn),.若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位準(zhǔn)備組織員工到武夷山風(fēng)景區(qū)旅游,旅行社給出了如下收費(fèi)標(biāo)準(zhǔn)(如圖所示):
設(shè)參加旅游的員工人數(shù)為x人.
(1)當(dāng)25<x<40時(shí),人均費(fèi)用為 元,當(dāng)x≥40時(shí),人均費(fèi)用為 元;
(2)該單位共支付給旅行社旅游費(fèi)用27000元,請(qǐng)問(wèn)這次參加旅游的員工人數(shù)共有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com