【題目】如圖,有一直角三角形紙片,邊,,,將該直角三角形紙片沿折疊,使點與點重合,則四邊形的周長為______.
【答案】18.
【解析】
先由折疊的性質(zhì)得AE=CE,AD=CD,∠DCE=∠A,進而得出,∠B=∠BCD,求得BD=CD=AD=AB=5,DE為△ABC的中位線,得到DE的長,再在Rt△ABC中,由勾股定理得到AC=8,即可得四邊形DBCE的周長.
∵沿DE折疊,使點A與點C重合,
∴AE=CE,AD=CD,∠DCE=∠A,
∴∠BCD=90°-∠DCE,
又∵∠B=90°-∠A,
∴∠B=∠BCD,
∴BD=CD=AD=AB=5,
∴DE為△ABC的中位線,
∴DE=BC=3,
∵BC=6,AB=10,∠ACB=90°,
∴AC=,
∴四邊形DBCE的周長為:BD+DE+CE+BC=5+3+4+6=18.
故答案為:18.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,上午8時,一條船從處測得燈塔在北偏西,以15海里/時的速度向北航行,9時30分到達處,測得燈塔在北偏西,若船繼續(xù)向正北方向航行,求輪船何時到達燈塔的正東方向處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年,長沙開始推廣垃圾分類,分類垃圾桶成為我們生活中的必備工具.某學(xué)校開學(xué)初購進型和型兩種分類垃圾桶,購買型垃圾桶花費了2500元,購買型垃圾桶花費了2000元,且購買型垃圾桶數(shù)量是購買型垃圾桶數(shù)量的2倍,已知購買一個型垃圾桶比購買一個型垃圾桶多花30元.
(1)求購買一個型垃圾桶、B型垃圾桶各需多少元?
(2)由于實際需要,學(xué)校決定再次購買分類垃圾桶,已知此次購進型和型兩種分類垃圾桶的數(shù)量一共為50個,恰逢市場對這兩種垃圾桶的售價進行調(diào)整,型垃圾桶售價比第一次購買時提高了8%,型垃圾桶按第一次購買時售價的9折出售,如果此次購買型和型這兩種垃圾桶的總費用不超過3240元,那么此次最多可購買多少個型垃圾桶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分線,AD與CE相交于點F,FM⊥AB,FN⊥BC,垂足分別為M,N.求證:FE=FD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),完成下列各題:
將函數(shù)關(guān)系式用配方法化為的形式,并寫出它的頂點坐標、對稱軸.
求出它的圖象與坐標軸的交點坐標.
在直角坐標系中,畫出它的圖象.
根據(jù)圖象說明:當為何值時,;當為何值時,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在 中,,點 為的中點.
(1)如圖1,E為線段DC上任意一點,將線段繞點D逆時針旋轉(zhuǎn)90°得到線段,連接 ,過點F作,交直線 于點 .判斷 與的數(shù)量關(guān)系并加以證明;
(2)如圖2,若為線段的延長線上任意一點,(1)中的其他條件不變,你在(1)中得出的結(jié)論是否發(fā)生改變,直接寫出你的結(jié)論,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD是菱形(四條邊都相等的平行四邊形).AB=4,∠ABC=60°,∠EAF的兩邊分別與邊BC,DC相交于點E,F,且∠EAF=60°.
(1)如圖1,當點E是線段CB的中點時,直接寫出線段AE,EF,AF之間的數(shù)量關(guān)系為: .
(2)如圖2,當點E是線段CB上任意一點時(點E不與B,C重合),求證:BE=CF;
(3)求△AEF周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知△OAB的兩個頂點的坐標分別是A(3,0),B(2,3).
(1)畫出△OAB關(guān)于y軸對稱的△OA1B1,其中點A,B的對應(yīng)點分別為A1,B1,并直接寫出點A1,B1的坐標;
(2)點C為y軸上一動點,連接A1C,B1C,求A1C+B1C的最小值并求出此時點C的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在Rt△ABC中,∠A=30°,DE垂直平分斜邊AC,交AB于D,E為垂足,連接CD,若BD=1,則AC的長是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com