【題目】我們已經(jīng)學(xué)習(xí)過:同弧或等弧所對(duì)的圓周角都相等,都等于該弧所對(duì)的圓心角的一半.請(qǐng)您就下面所給的圖和圖中,圓心與的位置關(guān)系,證明:.
【答案】證明見解析
【解析】
(1)延長(zhǎng)BO交⊙O于點(diǎn)D,連接CD,根據(jù)同弧或等弧所對(duì)的圓周角都相等可得∠A=∠D,再根據(jù)等腰三角形的兩底角相等,∠D=∠OCD,然后利用三角形的外角性質(zhì)∠BOC=∠D+∠OCD,整理即可得證;
(2)延長(zhǎng)BO交⊙O于點(diǎn)E,連接CE,根據(jù)同弧或等弧所對(duì)的圓周角都相等可得∠A=∠E,再根據(jù)等腰三角形的兩底角相等,∠E=∠OCE,然后利用三角形的外角性質(zhì)∠BOC=∠E+∠OCE,整理即可得證;
如圖,延長(zhǎng)交于點(diǎn),連接,則
(同弧或等弧所對(duì)的圓周角都相等),
∵,
∴,
∵(三角形的一個(gè)外角等于與它不相等的兩個(gè)內(nèi)角的和),
∴,
即;
如圖,延長(zhǎng)交于點(diǎn),連接,則
(同弧或等弧所對(duì)的圓周角都相等),
∵,
∴,
∵(三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和),
∴,
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠C=90°,O是AB的中點(diǎn),AC=6,∠MON=90°,將∠MON繞點(diǎn)O旋轉(zhuǎn),OM、ON分別交邊AC于點(diǎn)D,交邊BC于點(diǎn)E(D、E不與A、B、C重合)
(1)判斷△ODE的形狀,并說明理由;
(2)在旋轉(zhuǎn)過程中,四邊形CDOE的面積是否發(fā)生變化?若不改變,直接寫出這個(gè)值,若改變,請(qǐng)說明理由;
(3)如圖2,DE的中點(diǎn)為G,CG的延長(zhǎng)線交AB于F,請(qǐng)直接寫出四邊形CDFE的面積S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種蔬菜每千克售價(jià)(元)與銷售月份之間的關(guān)系如圖1所示,每千克成本(元)與銷售月份之間的關(guān)系如圖2所示,其中圖1中的點(diǎn)在同一條線段上,圖2中的點(diǎn)在同一條拋物線上,且拋物線的最低點(diǎn)的坐標(biāo)為(6,1).
(1)求出與之間滿足的函數(shù)表達(dá)式,并直接寫出的取值范圍;
(2)求出與之間滿足的函數(shù)表達(dá)式;
(3)設(shè)這種蔬菜每千克收益為元,試問在哪個(gè)月份出售這種蔬菜,將取得最大值?并求出此最大值.(收益=售價(jià)-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯(cuò)誤的是( ).
A.一個(gè)三角形中至少有兩個(gè)銳角
B.一個(gè)三角形中,一定有一個(gè)外角大于其中的一個(gè)內(nèi)角
C.鈍角三角形中至少有一個(gè)鈍角
D.銳角三角形,任何兩個(gè)內(nèi)角的和均大于90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有公路l1同側(cè)、l2異側(cè)的兩個(gè)城鎮(zhèn)A,B,如下圖.電信部門要修建一座信號(hào)發(fā)射塔,按照設(shè)計(jì)要求,發(fā)射塔到兩個(gè)城鎮(zhèn)A,B的距離必須相等,到兩條公路l1,l2的距離也必須相等,發(fā)射塔C應(yīng)修建在什么位置?請(qǐng)用尺規(guī)作圖找出所有符合條件的點(diǎn),注明點(diǎn)C的位置.(保留作圖痕跡,不要求寫出畫法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,AD⊥BC于點(diǎn)D,BD=2,以AD為一邊向右作等邊三角形ADE.
(1)求△ABC的周長(zhǎng);
(2)判斷AC、DE的位置關(guān)系,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
求證:(1)△ABD≌△ACD;
(2)BE=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為豐富學(xué)生的學(xué)習(xí)生活,某校九年級(jí)1班組織學(xué)生參加春游活動(dòng),所聯(lián)系的旅行社收費(fèi)標(biāo)準(zhǔn)如下:
如果人數(shù)超過25人,每增加1人,人均活動(dòng)費(fèi)用降低2元,但人均活動(dòng)費(fèi)用不得低于75元.
如果人數(shù)不超過25人,人均活動(dòng)費(fèi)用為100元.
春游活動(dòng)結(jié)束后,該班共支付給該旅行社活動(dòng)費(fèi)用2800元,請(qǐng)問該班共有多少人參加這次春游活動(dòng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例(k為常數(shù),且k≠0)的圖象交于A(1,a),B(b,1)兩點(diǎn),
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)A,B的坐標(biāo)
(2)在x軸上找一點(diǎn),使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com