【題目】如圖,一次函數(shù)y=x+4的圖象與反比例k為常數(shù),且k≠0)的圖象交于A1,a),Bb,1)兩點(diǎn),

1)求反比例函數(shù)的表達(dá)式及點(diǎn)AB的坐標(biāo)

2)在x軸上找一點(diǎn),使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).

【答案】1A1,3),B3,1),反比例函數(shù)的表達(dá)式y=;(2)點(diǎn)P坐標(biāo)(0).

【解析】

1)把點(diǎn)A1,a),Bb,1)代入一次函數(shù)y=x+4,即可得出ab,再把點(diǎn)A坐標(biāo)代入反比例函數(shù)y=,即可得出結(jié)論;

2)作點(diǎn)B作關(guān)于x軸的對稱點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,此時PA+PB的值最小,求出直線AD的解析式,令y=0,即可得出點(diǎn)P坐標(biāo).

1)把點(diǎn)A1a),Bb1)代入一次函數(shù)y=x+4,

a=1+41=b+4,

解得a=3b=3,

A13),B3,1);

點(diǎn)A1,3)代入反比例函數(shù)y=k=3,

∴反比例函數(shù)的表達(dá)式y=

2)作點(diǎn)B作關(guān)于x軸的對稱點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,此時PA+PB的值最小,

D3,﹣1),

設(shè)直線AD的解析式為y=mx+n,

A,D兩點(diǎn)代入得, ,

解得m=2,n=5

∴直線AD的解析式為y=2x+5,

y=0,得x= ,

∴點(diǎn)P坐標(biāo)(,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們已經(jīng)學(xué)習(xí)過:同弧或等弧所對的圓周角都相等,都等于該弧所對的圓心角的一半.請您就下面所給的圖和圖中,圓心的位置關(guān)系,證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都經(jīng)過原點(diǎn),頂點(diǎn)分別為A,B,與x軸的另一個交點(diǎn)分別為M、N,如果點(diǎn)A與點(diǎn)B,點(diǎn)M與點(diǎn)N都關(guān)于原點(diǎn)O成中心對稱,則拋物線C1和C2為姐妹拋物線,請你寫出一對姐妹拋物線C1和C2,使四邊形ANBM恰好是矩形,你所寫的一對拋物線解析式是_______________________和_________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在以點(diǎn)O為圓心的兩個同心圓中,大圓的弦AB交小圓于點(diǎn)C,D(如圖).

1)求證:AC=BD

2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AB=AC,以AB為直徑的⊙OBC于點(diǎn)D,交AC于點(diǎn)E.

(1)當(dāng)∠BAC為銳角時,如圖,求證:∠CBE=∠BAC;

(2)當(dāng)∠BAC為鈍角時,如圖②,CA的延長線與⊙O相交于點(diǎn)E,(1)中的結(jié)論是否仍然成立?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次尋寶人找到了如圖所示的兩個標(biāo)志點(diǎn)A(2,3),B(4,1),A,B兩點(diǎn)到寶藏點(diǎn)的距離都是,則寶藏點(diǎn)的坐標(biāo)是( 。

A. (1,0) B. (5,4) C. (1,0)或(5,4) D. (0,1)或(4,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1表示一個時鐘的鐘面垂直固定于水平桌面上,其中分針上有一點(diǎn)A,且當(dāng)鐘面顯示3點(diǎn)30分時,分針垂直于桌面,A點(diǎn)距桌面的高度為10公分.如圖2,若此鐘面顯示3點(diǎn)45分時,A點(diǎn)距桌面的高度為16公分,則鐘面顯示3點(diǎn)50分時,A點(diǎn)距桌面的高度為多少公分()

A. B. 16+π C. 18 D. 19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為慶祝祖國70周年華誕,陽光超市銷售甲、乙兩種慶祝商品,該超市若同時購進(jìn)甲、乙兩種商品各10件共花費(fèi)400;若購進(jìn)甲種商品30件,購進(jìn)乙種商品15件,將用去750元;

1)求甲、乙兩種商品每件的進(jìn)價;

2)由于甲、乙兩種商品受到市民歡迎,十一月份超市決定購進(jìn)甲、乙兩種商品共80件,且保持(1)的進(jìn)價不變,已知甲種商品每件的售價為15元,乙種商品每件的售價40元,要使十一月份購進(jìn)的甲、乙兩種商品共80件全部銷售完的總利潤不少于600元,那么該超市最多購進(jìn)甲種商品多少件?

查看答案和解析>>

同步練習(xí)冊答案