【題目】在矩形ABCD中,AB=6,AD=2 ,E是AB邊上一點(diǎn),AE=2,F(xiàn)是直線CD上一動(dòng)點(diǎn),將△AEF沿直線EF折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)A′,當(dāng)點(diǎn)E、A′、C三點(diǎn)在一條直線上時(shí),DF的長(zhǎng)度為

【答案】6+2 或6﹣2
【解析】解:如圖1,

F是線段CD上一動(dòng)點(diǎn),由翻折可知,∠FEA=∠FEA′,
∵CD∥AB,
∴∠CFE=∠AEF,
∴∠CFE=∠CEF,
∴CE=CF,
在Rt△BCE中,EC= = =2 ,
∴CF=CE=2 ,
∵AB=CD=6,
∴DF=CD﹣CF=6﹣2 ,
如圖2,

F是DC延長(zhǎng)線上一點(diǎn),由翻折可知,∠FEA=∠FEA′,
∵CD∥AB,
∴∠CFE=∠AEF,
∴∠CFE=∠CEF,
∴CE=CF,
在Rt△BCE中,EC= = =2 ,
∴CF=CE=2
∵AB=CD=6,
∴DF=CD+CF=6+2 ,
所以答案是6+2 或6﹣2
【考點(diǎn)精析】掌握矩形的性質(zhì)和翻折變換(折疊問題)是解答本題的根本,需要知道矩形的四個(gè)角都是直角,矩形的對(duì)角線相等;折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對(duì)稱軸為直線x=1,給出下列結(jié)論:
①b2-4ac>0;②2a+b=0;③abc>0;④3a+c>0.
則正確的結(jié)論個(gè)數(shù)為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù) 的圖象如圖.

(1)求它的對(duì)稱軸與x軸交點(diǎn)D的坐標(biāo);
(2)將該拋物線沿它的對(duì)稱軸向上平移,設(shè)平移后的拋物線與x軸,y軸的交點(diǎn)分別為A、B、C三點(diǎn),若∠ACB=90°,求此時(shí)拋物線的解析式;
(3)設(shè)(2)中平移后的拋物線的頂點(diǎn)為M,以AB為直徑,D為圓心作⊙D,試判斷直線CM與⊙D的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,D是斜邊AB的中點(diǎn),AC=4,BC=2,將△ACD沿直線CD折疊,點(diǎn)A落在點(diǎn)E處,聯(lián)結(jié)AE,那么線段AE的長(zhǎng)度等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù)y= (k>0)的圖象與BC邊交于點(diǎn)E.

(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AD與塔CB之間的距離AC長(zhǎng)為27m,某人在樓底A處測(cè)得塔頂?shù)难鼋菫?0°,爬到樓頂D處測(cè)得塔頂B的仰角為30°,分別求大樓AD的高與塔BC的高(結(jié)果精確到0.1m,參考數(shù)據(jù): ≈2.24, ≈1.732, ≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電銷售商城電冰箱的銷售價(jià)為每臺(tái)2100元,空調(diào)的銷售價(jià)為每臺(tái)1750元,每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多400元,商城用80000元購進(jìn)電冰箱的數(shù)量與用64000元購進(jìn)空調(diào)的數(shù)量相等.
(1)求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?
(2)現(xiàn)在商城準(zhǔn)備一次購進(jìn)這兩種家電共100臺(tái),設(shè)購進(jìn)電冰箱x臺(tái),這100臺(tái)家電的銷售總利潤(rùn)為y元,要求購進(jìn)空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤(rùn)不低于13000元,請(qǐng)分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一公路的道路維修工程,準(zhǔn)備從甲、乙兩個(gè)工程隊(duì)選一個(gè)隊(duì)單獨(dú)完成.根據(jù)兩隊(duì)每天的工程費(fèi)用和每天完成的工程量可知,若由兩隊(duì)合做此項(xiàng)維修工程,6天可以完成,共需工程費(fèi)用385200元,若單獨(dú)完成此項(xiàng)維修工程,甲隊(duì)比乙隊(duì)少用5天,每天的工程費(fèi)用甲隊(duì)比乙隊(duì)多4000元,從節(jié)省資金的角度考慮,應(yīng)該選擇哪個(gè)工程隊(duì)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點(diǎn),OA、OB分別在x軸、y軸上,點(diǎn)B的坐標(biāo)為(0,3 ),∠ABO=30°,將△ABC沿AB所在直線對(duì)折后,點(diǎn)C落在點(diǎn)D處,則點(diǎn)D的坐標(biāo)為(
A.( ,
B.(2,
C.( ,
D.( ,3﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案