【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)y= (k>0)的圖象與BC邊交于點E.

(1)當(dāng)F為AB的中點時,求該函數(shù)的解析式;
(2)當(dāng)k為何值時,△EFA的面積最大,最大面積是多少?

【答案】
(1)

解:∵在矩形OABC中,OA=3,OC=2,

∴B(3,2),

∵F為AB的中點,

∴F(3,1),

∵點F在反比例函數(shù)y= (k>0)的圖象上,

∴k=3,

∴該函數(shù)的解析式為y= (x>0)


(2)

解:由題意知E,F(xiàn)兩點坐標(biāo)分別為E( ,2),F(xiàn)(3, ),

∴SEFA= AFBE= × k(3﹣ k),

= k﹣ k2

=﹣ (k2﹣6k+9﹣9)

=﹣ (k﹣3)2+

當(dāng)k=3時,S有最大值.

S最大值=


【解析】(1)當(dāng)F為AB的中點時,點F的坐標(biāo)為(3,1),由此代入求得函數(shù)解析式即可;(2)根據(jù)圖中的點的坐標(biāo)表示出三角形的面積,得到關(guān)于k的二次函數(shù),利用二次函數(shù)求出最值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PB為⊙O的切線,B為切點,直線PO交⊙于點E、F,過點B作PO的垂線BA,垂足為點D,交⊙O于點A,延長AO與⊙O交于點C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關(guān)系,并加以證明;
(3)若BC=6,tan∠F= ,求cos∠ACB的值和線段PE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求證:角平分線上的點到這個角的兩邊距離相等. 已知:
求證:
證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(1,0),B(3,0),C(0,3).

(1)求拋物線的表達式及頂點D的坐標(biāo);
(2)如圖甲,點P是直線BC上方拋物線上一動點,過點P作y軸的平行線,交直線BC于點E,是否存在一點P,使線段PE的長最大?若存在,求出PE長的最大值;若不存在,請說明理由;
(3)如圖乙,過點A作y軸的平行線,交直線BC于點F,連接DA、DB四邊形OAFC沿射線CB方向運動,速度為每秒1個單位長度,運動時間為t秒,當(dāng)點C與點B重合時立即停止運動,設(shè)運動過程中四邊形OAFC與四邊形ADBF重疊部分面積為S,請求出S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個不透明的口袋,甲口袋中裝有3個分別標(biāo)有數(shù)字﹣1,﹣2,﹣4的小球,乙口袋中裝有3個分別標(biāo)有數(shù)字﹣3,5,6的小球,它們的形狀、大小完全相同,現(xiàn)隨機從甲口袋中摸出一個小球記下數(shù)字,再從乙口袋中摸出一個小球記下數(shù)字.
(1)請用列表或樹狀圖的方法(只選其中一種),表示出兩次所得數(shù)字可能出現(xiàn)的所有結(jié)果;
(2)求出兩個數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=6,AD=2 ,E是AB邊上一點,AE=2,F(xiàn)是直線CD上一動點,將△AEF沿直線EF折疊,點A的對應(yīng)點為點A′,當(dāng)點E、A′、C三點在一條直線上時,DF的長度為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB∥CD,AB=CD=15,AC平分∠BAD,AC與BD交于點O,將△ABD繞點D順時針方向旋轉(zhuǎn),得到△EFD,旋轉(zhuǎn)角為α(0°<α<180°)點A的對應(yīng)點為點E,點B的對應(yīng)點為點F

(1)求證:四邊形形ABCD是菱形
(2)若∠BAD=30°,DE邊為與AB邊相交于點M,當(dāng)點F恰好落在AC上時,求證:MD=ME
(3)若△ABD的周長是48,EF邊與BC邊交于點N,DF邊與BC邊交于點P,在旋轉(zhuǎn)的過程中,當(dāng)△FNP是直角三角形是,△FNP的面積是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=30°,點M,N分別在邊OA,OB上,OM= ,ON=3 ,點P,Q分別在邊OB,OA上運動,連接MP,PQ,QN,則MP+PQ+QN的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點O在AB上,經(jīng)過點A的⊙O與BC相切于點D,交AB于點E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

同步練習(xí)冊答案