【題目】已知:如圖,在ABC中,點(diǎn)D在邊AB上,點(diǎn)E在線段CD上,且∠ACD=B=BAE.

1)求證:

2)當(dāng)點(diǎn)ECD中點(diǎn)時(shí),求證:.

【答案】(1)證明見解析,(2)證明見解析..

【解析】

(1)欲證明,只要證明AED∽△BAC即可解決問題;

(2)由DAE∽△DCA,推出,由DE=EC,可得,推出,再證明AD2=ADAB即可解決問題;

(1)∵∠ACD=B=BAE,BAC=BAE+CAE,AED=ACD+CAE,

∴∠AED=BAC,

∵∠DAE=B,

∴△AED∽△BAC,

(2)∵∠ADE=CDA,DAE=ACD,

∴△DAE∽△DCA,

,

DE=EC,

,

,

∵∠DAC=BAC,ACD=B,

∴△ACD∽△ABC,

AC2=ADAB,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時(shí)BD=CF,BD⊥CF成立.

(1)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

(2)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)BD交CF于點(diǎn)G.

①求證:BD⊥CF;

②當(dāng)AB=4,AD=時(shí),求線段BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與直線交于點(diǎn)O0,0),。點(diǎn)B是拋物線上OA之間的一個(gè)動(dòng)點(diǎn),過點(diǎn)B分別作x軸、y軸的平行線與直線OA交于點(diǎn)C,E

1)求拋物線的函數(shù)解析式;

2)若點(diǎn)COA的中點(diǎn),求BC的長(zhǎng);

3)以BCBE為邊構(gòu)造條形BCDE,設(shè)點(diǎn)D的坐標(biāo)為(m,n),求m,n之間的關(guān)系式。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于AB兩點(diǎn).

1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式.

2)求△AOB的面積.

3)根據(jù)圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對(duì)去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).

請(qǐng)根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補(bǔ)充完整;

(3)求扇形統(tǒng)計(jì)圖中C所對(duì)圓心角的度數(shù);

(4)若有外型完全相同的A、B、C、D粽各一個(gè),煮熟后,小王吃了兩個(gè).用列表或畫樹狀圖的方法,求他第二個(gè)吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)(x<0,常數(shù)k<0)的圖象經(jīng)過點(diǎn)A(-12),B(m,n)(m<-1),過點(diǎn)By軸的垂線,垂足為C,若△ABC面積為2,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣1,2),B3,4).

1)畫出ABO向上平移2個(gè)單位,再向左平移4個(gè)單位后所得的圖形A′B′O′

2)寫出A、B、O后的對(duì)應(yīng)點(diǎn)A′、B′、O′的坐標(biāo);

3)求兩次平移過程中OB共掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上學(xué)習(xí)了圓周角的概念和性質(zhì):頂點(diǎn)在圓上,兩邊與圓相交,同弧所對(duì)的圓周角相等,小明在課后繼續(xù)對(duì)圓外角和圓內(nèi)角進(jìn)行了探究.

下面是他的探究過程,請(qǐng)補(bǔ)充完整:

定義概念:頂點(diǎn)在圓外,兩邊與圓相交的角叫做圓外角,頂點(diǎn)在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M所對(duì)的一個(gè)圓外角.

(1)請(qǐng)?jiān)趫D2中畫出所對(duì)的一個(gè)圓內(nèi)角;

提出猜想

(2)通過多次畫圖、測(cè)量,獲得了兩個(gè)猜想:一條弧所對(duì)的圓外角______這條弧所對(duì)的圓周角;一條弧所對(duì)的圓內(nèi)角______這條弧所對(duì)的圓周角;(大于、等于小于”)

推理證明:

(3)利用圖1或圖2,在以上兩個(gè)猜想中任選一個(gè)進(jìn)行證明;

問題解決

經(jīng)過證明后,上述兩個(gè)猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.

(4)如圖3F,H是∠CDE的邊DC上兩點(diǎn),在邊DE上找一點(diǎn)P使得∠FPH最大.請(qǐng)簡(jiǎn)述如何確定點(diǎn)P的位置.(寫出思路即可,不要求寫出作法和畫圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為提升硬件設(shè)施,決定采購80臺(tái)電腦,現(xiàn)有A,B兩種型號(hào)的電腦可供選擇.已知每臺(tái)A型電腦比B型的貴2000元,2臺(tái)A型電腦與3臺(tái)B型電腦共需24000元.

(1)分別求A,B兩種型號(hào)電腦的單價(jià);

(2)若A,B兩種型號(hào)電腦的采購總價(jià)不高于38萬元,則A型電腦最多采購多少臺(tái)?

查看答案和解析>>

同步練習(xí)冊(cè)答案