【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長(zhǎng)為( 。
A. 8 B. 8 C. 4 D. 6
【答案】D
【解析】分析: 連接OB,根據(jù)等腰三角形三線合一的性質(zhì)可得BO⊥EF,再根據(jù)矩形的性質(zhì)可得OA=OB,根據(jù)等邊對(duì)等角的性質(zhì)可得∠BAC=∠ABO,再根據(jù)三角形的內(nèi)角和定理列式求出∠ABO=30°,即∠BAC=30°,根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計(jì)算即可求出AB.
詳解: 如圖,連接OB,
∵BE=BF,OE=OF,
∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO,
又∵∠BEF=2∠BAC,
即2∠BAC+∠BAC=90°,
解得∠BAC=30°,
∴∠FCA=30°,
∴∠FBC=30°,
∵FC=2,
∴BC=2,
∴AC=2BC=4,
∴AB===6,
故選:D.
點(diǎn)睛: 本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),直角三角形30°角所對(duì)的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線并求出∠BAC=30°是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)環(huán)保意識(shí),某社區(qū)計(jì)劃開(kāi)展一次“減碳環(huán)保,減少用車時(shí)間”的宣傳活動(dòng),對(duì)部分家庭五月份的平均每天用車時(shí)間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)本次抽樣調(diào)查了多少個(gè)家庭?
(2)將圖①中的條形圖補(bǔ)充完整,直接寫(xiě)出用車時(shí)間的中位數(shù)落在哪個(gè)時(shí)間段內(nèi);
(3)求用車時(shí)間在1~1.5小時(shí)的部分對(duì)應(yīng)的扇形圓心角的度數(shù);
(4)若該社區(qū)有車家庭有1600個(gè),請(qǐng)你估計(jì)該社區(qū)用車時(shí)間不超過(guò)1.5小時(shí)的約有多少個(gè)家庭?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊BC上,若∠AEF=90°,且EF交正方形的外角∠DCM的平分線CF于點(diǎn)F.
(1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個(gè)三角形全等來(lái)證明AE=EF,請(qǐng)敘述你的一個(gè)構(gòu)造方案,并指出是哪兩個(gè)三角形全等(不要求證明);
(2)如圖2,若點(diǎn)E在線段BC上滑動(dòng)(不與點(diǎn)B,C重合).
①AE=EF是否一定成立?說(shuō)出你的理由;
②在如圖2所示的直角坐標(biāo)系中拋物線y=ax2+x+c經(jīng)過(guò)A、D兩點(diǎn),當(dāng)點(diǎn)E滑動(dòng)到某處時(shí),點(diǎn)F恰好落在此拋物線上,求此時(shí)點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,九年級(jí)(1)班的小明與小艷兩位同學(xué)去操場(chǎng)測(cè)量旗桿DE的高度,已知直立在地面上的竹竿AB的長(zhǎng)為3 m.某一時(shí)刻,測(cè)得竹竿AB在陽(yáng)光下的投影BC的長(zhǎng)為2 m.
(1)請(qǐng)你在圖中畫(huà)出此時(shí)旗桿DE在陽(yáng)光下的投影,并寫(xiě)出畫(huà)圖步驟;
(2)在測(cè)量竹竿AB的影長(zhǎng)時(shí),同時(shí)測(cè)得旗桿DE在陽(yáng)光下的影長(zhǎng)為6 m,請(qǐng)你計(jì)算旗桿DE的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在校園文化藝術(shù)節(jié)中,九年級(jí)一班有1名男生和2名女生獲得美術(shù)獎(jiǎng),另有2名男生和2名女生獲得音樂(lè)獎(jiǎng).
(1)從獲得美術(shù)獎(jiǎng)和音樂(lè)獎(jiǎng)的7名學(xué)生中選取1名參加頒獎(jiǎng)大會(huì),求剛好是男生的概率;
(2)分別從獲得美術(shù)獎(jiǎng)、音樂(lè)獎(jiǎng)的學(xué)生中各選取1名參加頒獎(jiǎng)大會(huì),用列表或樹(shù)狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,連接BE交對(duì)角線AC于點(diǎn)F,則∠EFC=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系中,一次函數(shù) )和二次函數(shù) )的圖象可能為( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD與正方形A1B1C1D1關(guān)于某點(diǎn)中心對(duì)稱,已知A, D1,D三點(diǎn)的坐標(biāo)分別是(0,4),(0,3),(0,2).
(1)對(duì)稱中心的坐標(biāo);
(2)寫(xiě)出頂點(diǎn)B, C, B1 , C1的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com