【題目】為增強(qiáng)環(huán)保意識,某社區(qū)計(jì)劃開展一次“減碳環(huán)保,減少用車時(shí)間”的宣傳活動,對部分家庭五月份的平均每天用車時(shí)間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:
(1)本次抽樣調(diào)查了多少個(gè)家庭?
(2)將圖①中的條形圖補(bǔ)充完整,直接寫出用車時(shí)間的中位數(shù)落在哪個(gè)時(shí)間段內(nèi);
(3)求用車時(shí)間在1~1.5小時(shí)的部分對應(yīng)的扇形圓心角的度數(shù);
(4)若該社區(qū)有車家庭有1600個(gè),請你估計(jì)該社區(qū)用車時(shí)間不超過1.5小時(shí)的約有多少個(gè)家庭?
【答案】(1)200個(gè)(2)用車時(shí)間的中位數(shù)落在1~1.5小時(shí)時(shí)間段內(nèi)(3)162°(4)1200個(gè)
【解析】解:(1)∵觀察統(tǒng)計(jì)圖知:用車時(shí)間在1.5~2小時(shí)的有30人,其圓心角為54°,
∴抽查的總?cè)藬?shù)為30÷=200(個(gè))。
(2)用車時(shí)間在0.5~1小時(shí)的有200×=60(個(gè));
用車時(shí)間在2~2.5小時(shí)的有200﹣60﹣30﹣90=20(人)。
補(bǔ)充條形統(tǒng)計(jì)圖如下:
用車時(shí)間的中位數(shù)落在1~1.5小時(shí)時(shí)間段內(nèi)。
(3)用車時(shí)間在1~1.5小時(shí)的部分對應(yīng)的扇形圓心角的度數(shù)為×360°=162°。
(4)該社區(qū)用車時(shí)間不超過1.5小時(shí)的約有1600×=1200(個(gè))。
(1)用1.5﹣2小時(shí)的頻數(shù)除以其所占的百分比即可求得抽樣調(diào)查的人數(shù)。
(2)根據(jù)圓心角的度數(shù)求出每個(gè)小組的頻數(shù)即可補(bǔ)全統(tǒng)計(jì)圖;用車時(shí)間的第100和101個(gè)家庭都在1~1.5小時(shí)時(shí)間段內(nèi),故用車時(shí)間的中位數(shù)落在1~1.5小時(shí)時(shí)間段內(nèi)。
(3)用人數(shù)除以總?cè)藬?shù)乘以周角即可求得圓心角的度數(shù)。
(4)用總?cè)藬?shù)乘以不超過1.5小時(shí)的所占的百分比即可。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A點(diǎn)坐標(biāo)為(3,3),將△ABC 先向下平移4個(gè)單位得△A'B'C',再將△A'B'C'繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°得△A'B'C'.
(1)請你畫出△A'B'C'和△A'B'C';
(2)點(diǎn)A'的坐標(biāo)為 ;
(3)△ABC和△A'B'C'關(guān)于某個(gè)點(diǎn)中心對稱,這個(gè)點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由;
(3)點(diǎn)E是線段BC上的一個(gè)動點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動到什么位置時(shí),△CBF的面積最大?求出△CBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以OA為半徑的⊙O與邊BC交于點(diǎn)D,與邊AC交于點(diǎn)E,連接AD,且AD平分∠BAC.
(1)試判斷BC與⊙O的位置關(guān)系,并說明理由;
(2)若∠BAC=60°,OA=2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出關(guān)于軸對稱的,并寫出各頂點(diǎn)的坐標(biāo);
(2)將向右平移6個(gè)單位,作出平移后的并寫出各頂點(diǎn)的坐標(biāo);
(3)觀察和,它們是否關(guān)于某直線對稱?若是,請用粗線條畫出對稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α,將△BOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形ABC中,AB=24,AC=18,D是AC上一點(diǎn),AD=12,在AB上取一點(diǎn)E,使A、D、E三點(diǎn)組成的三角形與ABC相似,則AE=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:(不要求寫作法)如圖,在 10×10 的方格紙中,有一個(gè)格點(diǎn)四邊形 ABCD(即四邊形的頂點(diǎn)都在格點(diǎn)上)。①在給出的方格紙中,畫出四邊形 ABCD 向下平移 5 格后的四邊形 ABCD;②在給出的方格紙中,畫出四邊形 ABCD 關(guān)于直線 l 對稱的圖形 ABCD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為( )
A. 8 B. 8 C. 4 D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com