【題目】小陽在如圖所示的扇形舞臺(tái)上沿O-M-N勻速行走,他從點(diǎn)O出發(fā),沿箭頭所示的方向經(jīng)過點(diǎn)M再走到點(diǎn)N,共用時(shí)70秒.有一臺(tái)攝像機(jī)選擇了一個(gè)固定的位置記錄了小陽的走路過程,設(shè)小陽走路的時(shí)間為t(單位:秒),他與攝像機(jī)的距離為y(單位:米),表示y與t的函數(shù)關(guān)系的圖象大致如圖②,則這個(gè)固定位置可能是圖①中的
A.點(diǎn)Q B.點(diǎn)P C.點(diǎn)M D.點(diǎn)N
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)二次函數(shù)的圖象經(jīng)過點(diǎn)A(0,1),它的頂點(diǎn)為B(1,3).
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)過點(diǎn)A作AC⊥AB交拋物線于點(diǎn)C,點(diǎn)P是直線AC上方拋物線上的一點(diǎn),當(dāng)△APC面積最大時(shí),求點(diǎn)P的坐標(biāo)和△APC的面積最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y,請根據(jù)已學(xué)知識(shí)探究該函數(shù)的圖象和性質(zhì).
(1)列表,寫出表中a、b,c的值:a= ,b= ,c= ;
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 0.5 | a | 2.5 | b | 2.5 | 1 | c | … |
(2)描點(diǎn),連線:在如圖的平面直角坐標(biāo)系中畫出該函數(shù)的圖象,并寫出該函數(shù)的一條性質(zhì): ;
(3)已知函數(shù)y=x﹣1的圖象如圖所示,結(jié)合你所畫的函數(shù)圖象,直接寫出不等式x﹣1的解集: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店以40元/千克的單價(jià)新進(jìn)一批茶葉,經(jīng)調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),銷售量y(千克)與銷售單價(jià)x(元/千克)之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象,求y與x的函數(shù)關(guān)系式;
(2)商店想在銷售成本不超過3000元的情況下,使銷售利潤達(dá)到2400元,問銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖
(1)方法體驗(yàn):
如圖1,點(diǎn)P在矩形ABCD的對角線AC上,且不與點(diǎn)A,C重合,過點(diǎn)P分別作邊AB,AD的平行線,交兩組對邊于點(diǎn)E,F和G,H,容易證明四邊形PEDH和四邊形PFBG是面積相等的矩形,分別連結(jié)EG,FH.
①根據(jù)矩形PEDH和矩形PFBG面積相等的關(guān)系,那么PE·PH= .
②求證:EG∥FH.
(2)方法遷移:
如圖2,已知直線 分別與x軸,y軸交于D,C兩點(diǎn),與雙曲線 交于A,B兩點(diǎn). 求證:AC=BD.
(3)知識(shí)應(yīng)用:
如圖3,反比例函數(shù) (x>0)的圖象與矩形ABCO的邊BC交于點(diǎn)D,與邊AB交于點(diǎn)E, 直線DE與x軸,y軸分別交于點(diǎn)F,G .若矩形ABCO的面積為10,△ODG與△ODF的面積比為3:5,則k=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=mx+k,與x軸,y軸分別交于點(diǎn)A,B,經(jīng)過點(diǎn)A的拋物線y=ax2+bx﹣3a與x軸另一個(gè)交點(diǎn)為點(diǎn)D,AD=4,將點(diǎn)B向右平移5個(gè)單位長度,得到點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo)(用k表示);
(2)求拋物線的對稱軸;
(3)若拋物線的對稱軸在y軸右側(cè),連接BD,BD比BO長1,拋物線與線段BC恰有一個(gè)公共點(diǎn),求直線y=mx+k的解析式和a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,CD是⊙O的切線,AD⊥CD于點(diǎn)D.E是AB延長線上一點(diǎn),CE交⊙O于點(diǎn)F,連結(jié)OC,AC.
(1)求證:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黔東南州某超市購進(jìn)甲、乙兩種商品,已知購進(jìn)3件甲商品和2件乙商品,需60元;購進(jìn)2件甲商品和3件乙商品,需65元.
(1)甲、乙兩種商品的進(jìn)貨單價(jià)分別是多少?
(2)設(shè)甲商品的銷售單價(jià)為x(單位:元/件),在銷售過程中發(fā)現(xiàn):當(dāng)11≤x≤19時(shí),甲商品的日銷售量y(單位:件)與銷售單價(jià)x之間存在一次函數(shù)關(guān)系,x、y之間的部分?jǐn)?shù)值對應(yīng)關(guān)系如表:
銷售單價(jià)x(元/件) | 11 | 19 |
日銷售量y(件) | 18 | 2 |
請寫出當(dāng)11≤x≤19時(shí),y與x之間的函數(shù)關(guān)系式.
(3)在(2)的條件下,設(shè)甲商品的日銷售利潤為w元,當(dāng)甲商品的銷售單價(jià)x(元/件)定為多少時(shí),日銷售利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com