【題目】如圖,在平面直角坐標系中,菱形ABCD的四個頂點均在坐標軸上,A(0,2),∠ABC=60°.把一條長為2013個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按A﹣B﹣C﹣D﹣A﹣…的規(guī)律緊繞在菱形ABCD的邊上,則細線另一端所在位置的點的坐標是( )
A.(,) B.(,﹣) C.(﹣,) D.(﹣,)
【答案】C
【解析】
試題分析:根據(jù)A的坐標和∠ABC=60°,求出菱形的邊長和周長,然后求出另一端是繞第幾圈后的第幾個單位長度,從而確定答案.
解:∵A(0,2),
∴AC=4,
∵∠ABC=60°,
∴AB=BC=CD=DA=4,菱形的周長為16,
即繞菱形ABCD一周的細線長度為16,
2013÷16=125…13,
則細線另一端在繞四邊形第125圈的第13個單位長度的位置,
即此時細線另一端在AD邊上,且距離D點為1個單位長度,距離A點3個單位長度,
設AD所在的直線為y=kx+b,
∵∠ABC=60°,A(0,2),
∴D(﹣2,0),
把點的坐標代入求解析式得:y=﹣x+2,
即CD所在直線為y=﹣x+2,
把選項中各點代入,滿足題意的為(﹣,).
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進價為40元的蘋果,物價部門規(guī)定每箱售價不得高于55元,市場調(diào)查發(fā)現(xiàn),若每箱以50元的價格調(diào)查,平均每天銷售90箱,價格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價x(元/箱)之間的函數(shù)關系式.
(2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售價x(元/箱)之間的函數(shù)關系式.
(3)當每箱蘋果的銷售價為多少元時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△BAC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°得到△AB′C′(點B的對應點是點B′,點C的對應點是點C′),連接CC′,若∠CC′B′=30°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果方程x2+px+q=0有兩個根是x1,x2,那么x1+x2=﹣p,x1x2=q,請根據(jù)以上結(jié)論,解決下列問題:
(1)已知關于x的方程x2+2x﹣5=0,求(x1+2)(x2+2)和(+)的值;
(2)已知a,b滿足a2﹣15a﹣5=0,b2﹣15b﹣5=0,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB上的一點,△ADE和△BCE都是等邊三角形,點P、Q、M、N分別為AB、BC、CD、DA的中點,則四邊形MNPQ是( )
A.等腰梯形 B.矩形 C.菱形 D.正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分7分) 已知:如圖,A是⊙O上一點,半徑OC的延長線與過點A的直線交于B點,OC=BC,AC=OB.
(1)求證:AB是⊙O的切線;
(2)若∠ACD=45°,OC=2,求弦CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD與等邊△AEF的邊長相等,且E、F分別在BC、CD,則∠BAD的度數(shù)是( )
A.80° B.90° C.100° D.120°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com