【題目】某校為了了解全校400名學(xué)生參加課外鍛煉的情況,隨機(jī)對40名學(xué)生一周內(nèi)平均每天參加課外鍛煉的時(shí)間進(jìn)行了調(diào)查,結(jié)果如下:(單位:分)
40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36
34 53 38 40 39 32 45 40 50 45 40 40 26 45 40 45 35 40 42 45
(1)補(bǔ)全頻率分布表和頻率分布直方圖.
分組 | 頻數(shù) | 頻率 |
4.5﹣22.5 | 2 | 0.050 |
22.5﹣30.5 | 3 | |
30.5﹣38.5 | 10 | 0.250 |
38.5﹣46.5 | 19 | |
46.5﹣54.5 | 5 | 0.125 |
54.5﹣62.5 | 1 | 0.025 |
合計(jì) | 40 | 1.000 |
(2)填空:在這個(gè)問題中,總體是____,樣本是____.由統(tǒng)計(jì)結(jié)果分析的,這組數(shù)據(jù)的平均數(shù)是38.35(分),眾數(shù)是____,中位數(shù)是_____.
(3)如果描述該校400名學(xué)生一周內(nèi)平均每天參加課外鍛煉時(shí)間的總體情況,你認(rèn)為用平均數(shù)、眾數(shù)、中位數(shù)中的哪一個(gè)量比較合適?
(4)估計(jì)這所學(xué)校有多少名學(xué)生,平均每天參加課外鍛煉的時(shí)間多于30分?
【答案】(1)補(bǔ)全頻率分布表和頻率分布直方圖. 見解析;(2)總體是全校400名學(xué)生平均每天參加課外鍛煉的時(shí)間,樣本40名學(xué)生平均每天參加課外鍛煉的時(shí)間,眾數(shù)是40,中位數(shù)是40;(3)用平均數(shù)、中位數(shù)或眾數(shù)描述該校400名學(xué)生平均每天參加課外鍛煉時(shí)間的總體情況都比較合適,因?yàn)樵谶@一問題中,這三個(gè)量非常接近;(4)估計(jì)這所學(xué)校平均每天參加課外鍛煉的時(shí)間多于30分的學(xué)生有350人.
【解析】
(1)根據(jù)調(diào)查表,可補(bǔ)全頻率分布表和頻率分布直方圖;
(2)根據(jù)總體、樣本、眾數(shù)、中位數(shù)的概念,易得答案;
(3)因?yàn)樵谶@一問題中,這三個(gè)量非常接近;所以用平均數(shù)、眾數(shù)和中位數(shù)描述該校400名學(xué)生平均每天參加課外鍛煉時(shí)間的總體情況都比較合適;
(4)用樣本估計(jì)總體的思想可估計(jì)這所學(xué)校平均每天參加課外鍛煉的時(shí)間多于30分的學(xué)生.
(1)樣本容量=2÷0.050=40,所以第2組的頻率=3÷40=0.075;第四組的頻率=19÷40=0.475.如圖:
(2)總體是全校400名學(xué)生平均每天參加課外鍛煉的時(shí)間,樣本40名學(xué)生平均每天參加課外鍛煉的時(shí)間,眾數(shù)是40,中位數(shù)是40;
(3)用平均數(shù)、中位數(shù)或眾數(shù)描述該校400名學(xué)生平均每天參加課外鍛煉時(shí)間的總體情況都比較合適,因?yàn)樵谶@一問題中,這三個(gè)量非常接近;
(4)因?yàn)殡S機(jī)調(diào)查的40名學(xué)生平均每天參加課外鍛煉的時(shí)間多于30分的有35人,
所以可以估計(jì)這所學(xué)校平均每天參加課外鍛煉的時(shí)間多于30分的學(xué)生有×400=350人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了以“責(zé)任、感恩”為主題的班隊(duì)活動(dòng),活動(dòng)結(jié)束后,初三(2)班數(shù)學(xué)興趣小組提出了5個(gè)主要觀點(diǎn)并在本班學(xué)生中進(jìn)行了調(diào)查(要求每位同學(xué)只選自己最認(rèn)可的一項(xiàng)觀點(diǎn)),并制成了如下扇形統(tǒng)計(jì)圖,
(1)該班有 人,學(xué)生選擇“和諧”觀點(diǎn)的有 人,在扇形統(tǒng)計(jì)圖中,“和諧”觀點(diǎn)所在扇形區(qū)域的圓心角是 度;
(2)如果該校有360名初三學(xué)生,利用樣本估計(jì)選擇“感恩”觀點(diǎn)的初三學(xué)生約有 人;
(3)如果數(shù)學(xué)興趣小組在這5個(gè)主要觀點(diǎn)中任選兩項(xiàng)觀點(diǎn)在全校學(xué)生中進(jìn)行調(diào)查,求恰好選到“和諧”和“感恩”觀點(diǎn)的概率(用樹狀圖或列表法分析解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn),.點(diǎn)為軸上一動(dòng)點(diǎn),過點(diǎn)且垂直于軸的直線分別交直線及拋物線于點(diǎn),.
(1)填空:點(diǎn)的坐標(biāo)為_________,拋物線的解析式為_________;
(2)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí)(不與點(diǎn),重合),
①當(dāng)為何值時(shí),線段最大值,并求出的最大值;
②求出使為直角三角形時(shí)的值;
(3)若拋物線上有且只有三個(gè)點(diǎn)到直線的距離是,請直接寫出此時(shí)由點(diǎn),,,構(gòu)成的四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣x2+2x﹣與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,對稱軸與x軸交于點(diǎn)E,直線CE交拋物線于點(diǎn)F(異于點(diǎn)C),直線CD交x軸交于點(diǎn)G.
(1)如圖1,求直線CE的解析式和頂點(diǎn)D的坐標(biāo);
(2)如圖1,點(diǎn)P為直線CF上方拋物線上一點(diǎn),連接PC、PF,當(dāng)△PCF的面積最大時(shí),點(diǎn)M是過P垂直于x軸的直線l上一點(diǎn),點(diǎn)N是拋物線對稱軸上一點(diǎn),求FM+MN+NO的最小值;
(3)如圖2,過點(diǎn)D作DI⊥DG交x軸于點(diǎn)I,將△GDI沿射線GB方向平移至△G′D′I′處,將△G′D′I′繞點(diǎn)D′逆時(shí)針旋轉(zhuǎn)α(0<α<180°),當(dāng)旋轉(zhuǎn)到一定度數(shù)時(shí),點(diǎn)G′會(huì)與點(diǎn)I重合,記旋轉(zhuǎn)過程中的△G′D′I′為△G″D′I″,若在整個(gè)旋轉(zhuǎn)過程中,直線G″I″分別交x軸和直線GD′于點(diǎn)K、L兩點(diǎn),是否存在這樣的K、L,使△GKL為以∠LGK為底角的等腰三角形?若存在,求此時(shí)GL的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點(diǎn)A(1,4)、點(diǎn)B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點(diǎn)C.
(1)若點(diǎn)A(0,6),N(0,2),∠ABN=30°,求點(diǎn)B的坐標(biāo);
(2)若D為線段NB的中點(diǎn),求證:直線CD是⊙M的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與雙曲線交于A、C兩點(diǎn),交x軸于點(diǎn)B,且OA=AB.
(1)求雙曲線的解析式;
(2)求點(diǎn)C的坐標(biāo),并直接寫出時(shí)x的取值范圍;
(3)設(shè)AC直線與y軸交于點(diǎn)D,求D點(diǎn)到OA的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀例題,回答問題:
例題:已知二次三項(xiàng)式:x2﹣4x+m有一個(gè)因式是x+3,求另一個(gè)因式以及m的值.
解:設(shè)另一個(gè)因式為x+n,得x2﹣4x+m=(x+3)(x+n),則x2﹣4x+m=x2+(n+3)x+3n.
∴
∴
∴另一個(gè)因式為x﹣7,m=21.
仿照以上方法解答下面的問題:
已知二次三項(xiàng)式2x2+3x+k有一個(gè)因式是2x﹣5,求另一個(gè)因式以及k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A和B(3,0),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線上在x軸下方的動(dòng)點(diǎn),過M作MN∥y軸交直線BC于點(diǎn)N,求線段MN的最大值;
(3)E是拋物線對稱軸上一點(diǎn),F是拋物線上一點(diǎn),是否存在以A,B,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com