在△ABC中,點D、E分別在邊AB、AC上,CD平分∠ACB,DE∥BC.如果AC=10,AE=4,那么BC=________.

15
分析:首先利用角平分線的性質(zhì)和兩直線平行,內(nèi)錯角相等的性質(zhì)求證出△EDC是等腰三角形,然后再根據(jù)相似三角形對應邊的比相等求解.
解答:解:∵CD平分∠ACB,
∴∠ECD=∠DCB,
又∵DE∥BC,
∴∠EDC=∠DCB,
∴∠EDC=∠ECD,
∴△EDC是等腰三角形.
即ED=EC=AC-AE=10-4=6.
∵DE∥BC,
∴△ADE∽△ABC,

∴BC=5×6÷2=15.
點評:本題考查的是平行線的性質(zhì)以及角平分線的性質(zhì).本題關(guān)鍵是找出內(nèi)錯角,求出△DEC為等腰三角形,從而求解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,點O是AC邊上的一個動點,過點O作MN∥BC,交∠ACB的平分線于點E,交精英家教網(wǎng)∠ACB的外角平分線于點F.
(1)求證:OC=
12
EF;
(2)當點O位于AC邊的什么位置時,四邊形AECF是矩形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,點D,E分別在邊AB,AC上,給出5個論斷:①CD⊥AB;②BE⊥AC;③AE=CE;④∠ABE=30°;⑤CD=BE.
(1)如果論斷①②③④都成立,那么論斷⑤一定成立嗎?答:
 
;
(2)從論斷①②③④中選取3個作為條件,將論斷⑤作為結(jié)論,組成一個真命題,那么你選的3個論斷是
 
(只需填論斷的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)如圖,在△ABC中,點D是BC上一點,∠B=∠DAC=45°.
(1)如圖1,當∠C=45°時,請寫出圖中一對相等的線段;
AB=AC或AD=BD=CD;
AB=AC或AD=BD=CD;

(2)如圖2,若BD=2,BA=
3
,求AD的長及△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•洛江區(qū)質(zhì)檢)在△ABC中,點G是重心,若BC邊上的中線為6cm,則AG=
4
4
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•上海)如圖,已知在△ABC中,點D、E、F分別是邊AB、AC、BC上的點,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于(  )

查看答案和解析>>

同步練習冊答案