【題目】如圖,在平面直角坐標系中,,點的坐標為,拋物線經過兩點.
(1)求拋物線的解析式;
(2)點是直線上方拋物線上的一點,過點作軸于點,交線段于點,使.
①求點的坐標和的面積;
②在直線上是否存在點,使為直角三角形?若存在,直接寫出符合條件的所有點的坐標;若不存在,請說明理由.
【答案】(1);(2)①,3;②存在,點的坐標為或或或
【解析】
(1)先求出點C的坐標,再結合銳角三角函數求出AC的長度,進而得出點A的坐標,將點A和點B代入函數解析式即可得出答案;
(2)①先求出直線AB的解析式,設,并寫出,根據“”求出x的值,再利用割補法求出面積;②設,利用兩點間距離公式分別求出AB、BM和AM的長度,再分情況進行討論(i)當時,(ii)當時,(iii)當時,并利用勾股定理求出y的值.
解:(1),
,
,
,
,
中,,
,
,
,
,
把代入得
,
解得,
∴拋物線的解析式為;
(2)①
的解析式為,
設,則,
,
,
解得,(舍去)或-1,
在中,當時,y=4
,
②存在.
在直線上,且,
設,
,
,
,
分三種情況:
(i)當時,有,
,
解得,
或;
(ii)當時,有,
,
解得;
,
(iii)當時,有,
,
解得;
,
綜上,點的坐標為或或或;
科目:初中數學 來源: 題型:
【題目】在數學拓展課《折疊矩形紙片》上,小林折疊矩形紙片ABCD進行如下操作:①把△ABF翻折,點B落在CD邊上的點E處,折痕AF交BC邊于點F;②把△ADH翻折,點D落在AE邊長的點G處,折痕AH交CD邊于點H.若AD=6,AB=10,則的值是( 。
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,連結AP并延長AP交CD于F點,連結CP并延長CP交AD于Q點.給出以下結論:
①四邊形AECF為平行四邊形;
②∠PBA=∠APQ;
③△FPC為等腰三角形;
④△APB≌△EPC.
其中正確結論的個數為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y1=ax2﹣x+c與x軸交于點A和點B(1,0),與y軸交于點C(0,),拋物線y1的頂點為G,GM⊥x軸于點M.將拋物線y1平移后得到頂點為B且對稱軸為直線l的拋物線y2.
(1)求拋物線y2的解析式;
(2)如圖2,在直線l上是否存在點T,使△TAC是等腰三角形?若存在,請求出所有點T的坐標;若不存在,請說明理由;
(3)點P為拋物線y1上一動點,過點P作y軸的平行線交拋物線y2于點Q,點Q關于直線l的對稱點為R,若以P,Q,R為頂點的三角形與△AMG全等,求直線PR的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形ABCD中,對角線AC與BD交于點O;在Rt△PMN中,∠MPN90°.
(1)如圖1,若點P與點O重合且PM⊥AD、PN⊥AB,分別交AD、AB于點E、F,請直接寫出PE與PF的數量關系;
(2)將圖1中的Rt△PMN繞點O順時針旋轉角度α(0°<α<45°).
①如圖2,在旋轉過程中(1)中的結論依然成立嗎,若成立,請證明;若不成立,請說明理由;
②如圖2,在旋轉過程中,當∠DOM15°時,連接EF,若正方形的邊長為2,請求出線段EF的長;
③如圖3,旋轉后,若Rt△PMN的頂點P在線段OB上移動(不與點O、B重合),當BD3BP時,猜想此時PE與PF的數量關系,并給出證明;當BDm·BP時,請直接寫出PE與PF的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,菱形OABC的頂點A在x軸上,頂點B的坐標為(8,4),點P是對角線OB上一個動點,點D的坐標為(0,﹣2),當DP與AP之和最小時,點P的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,將拋物線y=﹣x2+bx+c與直線y=﹣x+1相交于點A(0,1)和點B(3,﹣2),交x軸于點C,頂點為點F,點D是該拋物線上一點.
(1)求拋物線的函數表達式;
(2)如圖1,若點D在直線AB上方的拋物線上,求△DAB的面積最大時點D的坐標;
(3)如圖2,若點D在對稱軸左側的拋物線上,且點E(1,t)是射線CF上一點,當以C、B、D為頂點的三角形與△CAE相似時,求所有滿足條件的t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題提出:如何將一個長為17,寬為1的長方形經過剪一剪,拼一拼,形成一個正方形.(下列所有圖中每個小方格的邊長都為1,剪拼過程中材料均無剩余)
問題探究:我們從長為5,寬為1的長方形入手.
(1)如圖①是一個長為5,寬為1的長方形.把這個長方形剪一剪、拼一拼后形成正方形,則正方形的面積應為_____________,設正方形的邊長為,則_________;
(2)我們可以把有些帶根號的無理數的被開方數表示成兩個正整數平方和的形式,比如.類比此,可以將(1)中的表示成_____________;
(3)的幾何意義可以理解為:以長度2和3為直角邊的直角三角形的斜邊長為;類比此,(2)中的可以理解為以長度________和__________為直角邊的直角三角形斜邊的長;
(4)剪一剪:由(3)可畫出如圖②的分割線,把長方形分成五部分;
(5)拼一拼:把圖②中五部分拼接得到如圖③的正方形;
問題解決:仿照上面的探究方法請把圖④中長為17,寬為1的長方形剪一剪,在圖⑤中畫出拼成的正方形.(說明:圖④的分割過程不作評分要求,只對圖⑤中畫出的最終結果評分)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(模型介紹)
古希臘有一個著名的“將軍飲馬問題”,大致內容如下:古希臘一位將軍,每天都要巡查河岸同側的兩個軍營.他總是先去營,再到河邊飲馬,之后,再巡查營.如圖①,他時常想,怎么走才能使每天走的路程之和最短呢?大數學家海倫曾用軸對稱的方法巧妙地解決了這個問題.如圖②,作點關于直線的對稱點,連結與直線交于點,連接,則的和最。埬阍谙铝械拈喿x、理解、應用的過程中,完成解答.理由:如圖③,在直線上另取任一點,連結,,,∵直線是點,的對稱軸,點,在上,
(1)∴__________,_________,∴____________.在中,∵,∴,即最。
(歸納總結)
在解決上述問題的過程中,我們利用軸對稱變換,把點在直線同側的問題轉化為在直線的兩側,從而可利用“兩點之間線段最短”,即轉化為“三角形兩邊之和大于第三邊”的問題加以解決(其中點為與的交點,即,,三點共線).由此,可拓展為“求定直線上一動點與直線同側兩定點的距離和的最小值”問題的數學模型.
(模型應用)
(2)如圖④,正方形的邊長為4,為的中點,是上一動點.求的最小值.
解析:解決這個問題,可借助上面的模型,由正方形對稱性可知,點與關于直線對稱,連結交于點,則的最小值就是線段的長度,則的最小值是__________.
(3)如圖⑤,圓柱形玻璃杯,高為,底面周長為,在杯內離杯底的點處有一滴蜂蜜,此時一只螞蟻正好在外壁,離杯上沿與蜂蜜相對的點處,則螞蟻到達蜂的最短路程為_________.
(4)如圖⑥,在邊長為2的菱形中,,將沿射線的方向平移,得到,分別連接,,,則的最小值為____________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com