【題目】1)如圖①,ABC是等邊三角形,點(diǎn)D是邊BC上任意一點(diǎn)(不與B、C重合),點(diǎn)E在邊AC上,∠ADE=60°,∠BAD與∠CDE有怎樣的數(shù)量關(guān)系,并給予證明.

2)如圖②,在ABC中,AB=AC,點(diǎn)D是邊BC上一點(diǎn)(不與B、C重合), ADE=B,點(diǎn)E在邊AC.CE=BD=3,BC=8,求AB的長(zhǎng)度.

【答案】1)見(jiàn)解析;(25

【解析】

1)通過(guò)等邊三角形以及角的換算即可證明;

2)通過(guò)全等三角形和角的換算的相關(guān)性質(zhì),即可求出.

1)∵△ABC是等邊三角形,

∴∠A=B=C=60°

又∵∠ADE=60°,

∴∠BAD+BDA=BDA+EDC

∴∠BAD=CDE

2)∵△ABC中,AB=AC,

∴∠B=C

又∵∠ADE=B

∴∠BAD=EDC

CE=BD,

∴△ABD≌△CDEAAS

AB=CD=BC-BD=8-3=5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:小剛站在河邊的點(diǎn)處,在河的對(duì)面(小剛的正北方向)的處有一電線塔,他想知道電線塔離他有多遠(yuǎn),于是他向正西方向走了30步到達(dá)一棵樹(shù)處,接著再向前走了30步到達(dá)處,然后他左轉(zhuǎn)直行,當(dāng)小剛看到電線塔、樹(shù)與自己現(xiàn)處的位置在一條直線時(shí),他共走了140步.

(1)根據(jù)題意,畫(huà)出示意圖;

(2)如果小剛一步大約50厘米,估計(jì)小剛在點(diǎn)處時(shí)他與電線塔的距離,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反映的是小麗從家外出到最終回家,離家距離(米)與時(shí)間(分)的關(guān)系圖。請(qǐng)根據(jù)圖像回答下列問(wèn)題:

1)小麗在A點(diǎn)表示含義:出發(fā)后______分鐘時(shí),離家距離______米;

2)出發(fā)后6-10分鐘之間可能發(fā)生了什么情況:______________________________,出發(fā)后14-18分鐘之間可能發(fā)生了什么情況: ________________________.

3)在28分鐘內(nèi)的行進(jìn)過(guò)程中,____________段時(shí)間的速度最慢,為____________米分;

4)小麗在回家路上,第28分鐘時(shí)停了4分鐘,之后立即以100/分的速度回到家.請(qǐng)寫(xiě)出計(jì)算過(guò)程,并在圖中補(bǔ)上28分鐘以后的路程與時(shí)間關(guān)系圖。

5)小麗一開(kāi)始從家外出到最終回家,中途共停留了____________分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCDEB都是等邊三角形,點(diǎn)A、D、B在同一直線上,如圖1

1)求證:DC=AE

2)若BMCD,BNAE,垂足分別為M、N,如圖2,求證:BMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知AB=10,點(diǎn)CD在線段AB上且AC=DB=2; P是線段CD上的動(dòng)點(diǎn),分別以APPB為邊在線段AB的同側(cè)作等邊△AEP和等邊△PFB,連結(jié)EF,設(shè)EF的中點(diǎn)為G;當(dāng)點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D時(shí),則點(diǎn)G移動(dòng)路徑的長(zhǎng)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公交公司決定更換節(jié)能環(huán)保的新型公交車(chē)購(gòu)買(mǎi)的數(shù)量和所需費(fèi)用如下表所示:

A型數(shù)量

B型數(shù)量

所需費(fèi)用萬(wàn)元

3

1

450

2

3

650

A型和B型公交車(chē)的單價(jià);

該公司計(jì)劃購(gòu)買(mǎi)A型和B型兩種公交車(chē)共10輛,已知每輛A型公交車(chē)年均載客量為60萬(wàn)人次,每輛B型公交車(chē)年均載客量為100萬(wàn)人次,若要確保這10輛公交車(chē)年均載客量總和不少于670萬(wàn)人次,則A型公交車(chē)最多可以購(gòu)買(mǎi)多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線ACBD相交于點(diǎn)O,且DEAC,CEBD

1)求證:四邊形OCED是菱形;

2)若AB=3,AD=4,求四邊形OCED的周長(zhǎng)和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在正方形外取一點(diǎn),連接、.過(guò)點(diǎn)的垂線交于點(diǎn).若,.下列結(jié)論:①;②點(diǎn)到直線的距離為;③;④;⑤;其中正確結(jié)論的序號(hào)是( )

A.①③④B.①②⑤C.③④⑤D.①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+2x﹣3x軸交于A、B兩點(diǎn),且B(1,0)

(1)求拋物線的解析式和點(diǎn)A的坐標(biāo);

(2)如圖1,點(diǎn)P是直線y=x上的動(dòng)點(diǎn),當(dāng)直線y=x平分∠APB時(shí),求點(diǎn)P的坐標(biāo);

3)如圖2,已知直線y=x分別與x軸、y軸交于C、F兩點(diǎn),點(diǎn)Q是直線CF下方的拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Qy軸的平行線,交直線CF于點(diǎn)D,點(diǎn)E在線段CD的延長(zhǎng)線上,連接QE.問(wèn):以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案