【題目】在如圖所示的三個函數(shù)圖象中,有兩個函數(shù)圖象能近似地刻畫如下a,b兩個數(shù)學問題:
問題a:矩形面積為4,它的長y與寬x之間的函數(shù)關(guān)系;
問題b:矩形周長為8,它的長y與寬x之間的函數(shù)關(guān)系.
(1)問題a,b所對應(yīng)的函數(shù)圖象分別為 ,(填寫序號);
(2)請你把剩下的函數(shù)圖象寫出一個適合的數(shù)學問題.
【答案】(1)②,①;(2)見解析
【解析】
(1)直接利用實際問題列出函數(shù)關(guān)系進而得出答案;
(2)直接利用函數(shù)圖象描述一個二次函數(shù)的關(guān)系即可.
(1)問題a:矩形面積為4,它的長y與寬x之間的函數(shù)關(guān)系為:y=(x>0);
問題b:矩形周長為8,它的長y與寬x之間的函數(shù)關(guān)系為:y=4﹣x(0<x<4).
問題a,b所對應(yīng)的函數(shù)圖象分別為:②,①;
故答案為:②,①;
(2)答案不唯一,
如:①正方形的面積y與邊長x之間的函數(shù)關(guān)系;
②圓的面積y與半徑x之間的函數(shù)關(guān)系.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在中,,點,分別是邊,上的點,且.
(1)若,,設(shè),,求關(guān)于的函數(shù)關(guān)系式;
(2)如圖②,,于點,于點,于點,點在線段上,,,,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我市“青山綠水”行動中,某社區(qū)計劃對面積為的區(qū)域進行綠化,經(jīng)投標由甲、乙兩個工程隊來完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,如果兩隊各自獨立完成面積為區(qū)域的綠化時,甲隊比乙隊少用6天.
(1)求甲、乙兩工程隊每天各能完成多少面積的綠化;
(2)若甲隊每天綠化費用是1.2萬元,乙隊每天綠化費用為0.5萬元,社區(qū)要使這次綠化的總費用不超過40萬元,則至少應(yīng)安排乙工程隊綠化多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形的邊長為4,點,分別在邊,上,且,直線與直線交于點,直線交直線于點,連接,.
(1)如圖1,當時,求證:平分;
(2)如圖2,將圖1中的繞點逆時針旋轉(zhuǎn),其他條件不變,(1)的結(jié)論是否成立?說明理由;
(3)當是等腰三角形時,直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量建筑物CD、EF的高度,在直線CE上選取觀測點A、B,AC的距離為40米.從A、B測得建筑物的頂部D的仰角分別為51.34°、68.20°,從B、D測得建筑物的頂部F的仰角分別為64.43°、26.57°.
(1)求建筑物CD的高度;
(2)求建筑物EF的高度.
(參考數(shù)據(jù):tan51.34°≈1.25,tan68.20°≈2.5,tan64.43°≈2,tan26.57°≈0.5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是一垂直于水平面的建筑物,某同學從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經(jīng)過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( 。
A. 21.7米 B. 22.4米 C. 27.4米 D. 28.8米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】網(wǎng)絡(luò)銷售是一種重要的銷售方式.某鄉(xiāng)鎮(zhèn)農(nóng)貿(mào)公司新開設(shè)了一家網(wǎng)店,銷售當?shù)剞r(nóng)產(chǎn)品.其中一種當?shù)靥禺a(chǎn)在網(wǎng)上試銷售,其成本為每千克10元.公司在試銷售期間,調(diào)查發(fā)現(xiàn),每天銷售量y(kg)與銷售單價x(元)滿足如圖所示的函數(shù)關(guān)系(其中).
(1)直接寫出y與x之間的函數(shù)關(guān)系式及自變量的取值范圍.
(2)若農(nóng)貿(mào)公司每天銷售該特產(chǎn)的利潤要達到3100元,則銷售單價x應(yīng)定為多少元?
(3)設(shè)每天銷售該特產(chǎn)的利潤為W元,若,求:銷售單價x為多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸、軸分別交于點,,經(jīng)過,兩點的拋物線與軸的負半軸的另一交點為,且
(1)求該拋物線的解析式及拋物線頂點的坐標;
(2)點是射線上一點,問是否存在以點,,為頂點的三角形,與相似,若存在,請求出點的坐標;若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點,BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com