【題目】如圖,正方形ABCD中,G為BC邊上一點,BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
【答案】(1)證明見解析;(2)EF=2.
【解析】試題分析:(1)由∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,推出∠BAE=∠ADF,即可根據(jù)AAS證明△ABE≌△DAF;
(2)設EF=x,則AE=DF=x+1,根據(jù)四邊形ABED的面積為6,列出方程即可解決問題;
試題解析:解:(1)∵四邊形ABCD是正方形,∴AB=AD,∵DF⊥AG,BE⊥AG,∴∠BAE+∠DAF=90°,∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,∵∠BAE=∠ADF,∠AEB=∠DFA,AB=AD,∴△ABE≌△DAF(AAS).
(2)設EF=x,則AE=DF=x+1,由題意2××(x+1)×1+×x×(x+1)=6,解得x=2或﹣5(舍棄),∴EF=2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知中,,,點D為AB的中點.如果點P在線段BC上以2cm/s的速度由點B向C點運動,同時,點Q在線段AC上由點A向C點以4cm/s的速度運動.
(1)若點P、Q兩點分別從B、A兩點同時出發(fā),經(jīng)過2秒后,與是否全等?請說明理由;
(2)若點P、Q兩點分別從B、A兩點同時出發(fā),的周長為16cm,設運動時間為t,問:當t為何值時,是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知下列命題:①相等的角是對頂角;②互補的角就是平角;③互補的兩個角一定是一個銳角,另一個為鈍角:④平行于同一條直線的兩直線平行;⑤兩條平行線被第三條直線所截,同旁內(nèi)角的角平分線互相垂直.其中,正確命題的個數(shù)為( )
A.0B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017廣東。┤鐖D,AB是⊙O的直徑,AB=,點E為線段OB上一點(不與O,B重合),作CE⊥OB,交⊙O于點C,垂足為點E,作直徑CD,過點C的切線交DB的延長線于點P,AF⊥PC于點F,連接CB.
(1)求證:CB是∠ECP的平分線;
(2)求證:CF=CE;
(3)當時,求劣弧的長度(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料,并解決有關問題
我們知道:
|a|=
現(xiàn)在我們可以用這一結(jié)論來化解含有絕對值的代數(shù)式
如化簡代數(shù)式|x+1|+|x﹣2|時,可令x+1=0和x﹣2=0,分別求得x=﹣1和x=2(稱﹣1,2分別為|x+1|和|x﹣2|的零點值)
在實數(shù)范圍內(nèi),零點值x=﹣1和x=2可將全體實數(shù)分成不重復且不遺漏的如下三種情況:
(1)x<﹣1(2)﹣1≤x<2(3)x≥2
從而化簡代數(shù)式|x+1|+|x﹣2|,可分以下三種情況
(1)x<﹣1時,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1
(2)﹣1≤x<2時,原式=x+1﹣(x﹣2)=3
(3)x≥2時,原式=x+1+x﹣2=2x﹣1
通過以上閱讀,請你解決以下問題
(1)化簡代數(shù)式|x+2|+|x﹣4|
(2)求|x﹣1|﹣4|x+1|的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為50和40,則△EDF的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.
(1)在圖中畫出與△ABC關于直線l成軸對稱的△AB′C′;
(2)在直線l上找一點P,使PB′+PC的長最短;
(3)若△ACM是以AC為腰的等腰三角形,點M在小正方形的頂點上.這樣的點M共有 個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一組數(shù)據(jù),,的平均數(shù)為4,方差為3,那么數(shù)據(jù),,的平均數(shù)和方差分別是( )
A. 4, 3 B. 6 3 C. 3 4 D. 6 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com