【題目】如圖1所示,在平面直角坐標(biāo)系中,、、,其中、滿足關(guān)系式,平移使點(diǎn)與點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).
(1)直接寫出、兩點(diǎn)的坐標(biāo),則(______,______)、(______,______).
(2)如圖1,過點(diǎn)作軸交于點(diǎn),猜想與數(shù)量關(guān)系,并說明理由.
(3)如圖2,過點(diǎn)作軸交軸于點(diǎn),為軸上點(diǎn)左側(cè)的一動(dòng)點(diǎn),連接,平分,平分,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),的值是否變化?如果變化,請(qǐng)說明理由;如果不變,請(qǐng)求出其值.
【答案】(1)3;0;-2;1;(2)互補(bǔ),理由見解析;(3)不變;.
【解析】
(1)根據(jù)算術(shù)平方根的非負(fù)性和平方的非負(fù)性即可求出a、b的值,從而求出A、B的坐標(biāo),再根據(jù)A、B的坐標(biāo)即可發(fā)現(xiàn)點(diǎn)A到點(diǎn)B的平移規(guī)律,從而得到:點(diǎn)C到點(diǎn)D的平移規(guī)律,即可求出D點(diǎn)坐標(biāo);
(2)延長(zhǎng)DE和CA交于點(diǎn)P,根據(jù)平行線的性質(zhì)即可證出:=∠P=∠OAC,然后根據(jù)平角的定義即可得:∠OAC+∠CAG=180°,從而得到:與互補(bǔ);
(3)根據(jù)角平分線的定義可得:∠ACM=,∠ACN=,從而得出∠MCN=∠ACN-∠ACM=,再根據(jù)平行線的性質(zhì)可得:∠AQC=∠FCQ,即可求出的值.
解:(1)∵
∴
解得:
∴點(diǎn)A坐標(biāo)為:(3,0),點(diǎn)B的坐標(biāo)為:(0,4)
∵平移使點(diǎn)與點(diǎn)重合,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),
由坐標(biāo)可知:點(diǎn)A到點(diǎn)B的平移規(guī)律為:先向左平移3個(gè)單位,再向上平移4個(gè)單位
∴點(diǎn)C到點(diǎn)D的平移規(guī)律為:先向左平移3個(gè)單位,再向上平移4個(gè)單位
∴點(diǎn)D的坐標(biāo)為:(1-3,﹣3+4)=(-2,1);
(2)互補(bǔ),理由如下,
延長(zhǎng)DE和CA交于點(diǎn)P,如下圖所示
∵BD∥CA
∴=∠P
∵DE⊥y軸
∴DE∥x軸
∴=∠P=∠OAC
∵∠OAC+∠CAG=180°
∴+∠CAG=180°
∴與互補(bǔ);
(3)不變,
∵平分,平分,
∴∠ACM=,∠ACN=,
∴∠MCN=∠ACN-∠ACM=-==,
∵軸,
∴∠AQC=∠FCQ,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從2012年7月1日起某市執(zhí)行新版居民階梯電價(jià),小明同學(xué)家收到了新政后的第一張電費(fèi)單,小明爸爸說:“小明,請(qǐng)你計(jì)算一下,這個(gè)月的電費(fèi)支出與新政前相比是多了還是少了?”于是小明上網(wǎng)了解了有關(guān)電費(fèi)的收費(fèi)情況,得到如下兩表:
2004年1月至2012年6月執(zhí)行的收費(fèi)標(biāo)準(zhǔn):
月用電量(度)50度有以下部分 | 50度有以下部分 | 超過50度但不超過200度部分 | 超過200度以上部分 |
單價(jià)(元/度) | 0.53 | 0.56 | 0.63 |
2012年7月起執(zhí)行的收費(fèi)標(biāo)準(zhǔn):
月用電量(度) | 230度有以下部分 | 超過230度但不超過400度部分 | 超過400度以上部分 |
單價(jià)(元/度) | 0.53 | 0.58 | 0.83 |
(1)若小明家2012年7月份的用電量為200度,則小明家7月份的電費(fèi)支出是多少元?比新政前少了多少元?
(2)若新政后小明家的月用電量為a度,請(qǐng)你用含a的代數(shù)式表示當(dāng)月的電費(fèi)支出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.D,E分別為邊BC,AC上一點(diǎn),將△ADE沿著直線AD翻折,點(diǎn)E落在點(diǎn)F處,如果DF⊥BC,△AEF是等邊三角形,那么AE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動(dòng):購買原價(jià)超過500元的商品,超過500元的部分可以享受打折優(yōu)惠.若購買商品的實(shí)際付款金額y(單位:元)與商品原價(jià)x(單位:元)的函數(shù)關(guān)系的圖像如圖所示,則超過500元的部分可以享受的優(yōu)惠是( )
A. 打六折B. 打七折C. 打八折D. 打九折
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:兩個(gè)觀察者從A,B兩地觀測(cè)空中C處一個(gè)氣球,分別測(cè)得仰角為45°和60°,已知A,B兩地相距200m,當(dāng)氣球沿著與AB平行地漂移40秒后到達(dá)C1,在A處測(cè)得氣球的仰角為30度.
求:(1)氣球漂移的平均速度(結(jié)果保留3個(gè)有效數(shù)字);
(2)在B處觀測(cè)點(diǎn)C1的仰角(精確到度).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若以一條線段為對(duì)角線作正方形,則稱該正方形為這條線段的“對(duì)角線正方形”.例如,圖①中正方形ABCD即為線段BD的“對(duì)角線正方形”.如圖②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,點(diǎn)P從點(diǎn)C出發(fā),沿折線CA﹣AB以5cm/s的速度運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B不重合時(shí),作線段PB的“對(duì)角線正方形”,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),線段PB的“對(duì)角線正方形”的面積為S(cm2).
(1)如圖③,借助虛線的小正方形網(wǎng)格,畫出線段AB的“對(duì)角線正方形”.
(2)當(dāng)線段PB的“對(duì)角線正方形”有兩邊同時(shí)落在△ABC的邊上時(shí),求t的值.
(3)當(dāng)點(diǎn)P沿折線CA﹣AB運(yùn)動(dòng)時(shí),求S與t之間的函數(shù)關(guān)系式.
(4)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)線段PB的“對(duì)角線正方形”至少有一個(gè)頂點(diǎn)落在∠A的平分線上時(shí),直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明設(shè)計(jì)的“作平行四邊形ABCD的邊AB的中點(diǎn)”的尺規(guī)作圖過程.
已知:平行四邊形ABCD.
求作:點(diǎn)M,使點(diǎn)M 為邊AB 的中點(diǎn).
作法:如圖,
①作射線DA;
②以點(diǎn)A 為圓心,BC長(zhǎng)為半徑畫弧,
交DA的延長(zhǎng)線于點(diǎn)E;
③連接EC 交AB于點(diǎn)M .
所以點(diǎn)M 就是所求作的點(diǎn).
根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形 (保留作圖痕跡);
(2)完成下面的證明.
證明:連接AC,EB.
∵四邊形ABCD 是平行四邊形,
∴AE∥BC.
∵AE= ,
∴四邊形EBCA 是平行四邊形( )(填推理的依據(jù)) .
∴AM =MB ( )(填推理的依據(jù)) .
∴點(diǎn)M 為所求作的邊AB的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與直線y=x+3交x軸負(fù)半軸于點(diǎn)A,交y軸于點(diǎn)C,交x軸正半軸于點(diǎn)B.
(1)求拋物線的解析式;
(2)點(diǎn)P為拋物線上任意一點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為x.
①若點(diǎn)P在第二象限,過點(diǎn)P作PN⊥x軸于N,交直線AC于點(diǎn)M,求線段PM關(guān)于x的函數(shù)解析式,并求出PM的最大值;
②若點(diǎn)P是拋物線上任意一點(diǎn),連接CP,以CP為邊作正方形CPEF,當(dāng)點(diǎn)E落在拋物線的對(duì)稱軸上時(shí),請(qǐng)直接寫出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com