【題目】如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=,下列結(jié)論:① △APD≌△AEB;② EB⊥ED;③ 點B到直線AE的距離為; ④,其中正確結(jié)論的序號是( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

【答案】B

【解析】

①利用同角的余角相等,易得∠EAB=PAD,再結(jié)合已知條件利用SAS可證兩三角形全等;②利用①中的全等,可得∠APD=AEB,結(jié)合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;③過BBFAE,交AE的延長線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結(jié)合AEP是等腰直角三角形,可證BEF是等腰直角三角形,再利用勾股定理可求EF、BF;④連接BD,求出ABD的面積,然后減去BDP的面積即可.

:①∵∠EAB+BAP=90°,

PAD十∠BAP=90°,

∴∠EAB=PAD,

又∵AE=AP,AB=AD,

∵在APDAEB中,

APD≌△AEB(SAS);

故此選項成立;

②∵△APD=AEB,

∴∠APD=AEB,

∵∠AEB=AEP+BEP,

APD=AEP+PAE,

∴∠BEP=PAE= 90°,

EBED;

故此選項成立;

③過BBFAE ,AE的延長線于F,

AE=AP,EAP=90°,

∴∠AEP=APE=45°,

又∵③中EBED,BFAF,

又∵BE=,

BF=EF=,

∴點B到直線AE的距離為,

故此選項不正確,

④如圖,連接BD,

RtAEP,

AE=AP=1,

EP=,

又∵PB=,

BE=,

∵△APD≌△AEB,

PD=BE=,

SABP+SADP=SABD-SBDP=S正方形ABCD×DP×BE=×(4+)-××,

故此選項不正確,

∴正確的有①②④,

B選項正確.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,分別以,為邊作等邊三角形和等邊三角形,連接,交于點,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,yx的反比例函數(shù)有(  )

(1)y=3x;(2)y=﹣;(3)y=;(4)﹣xy=3;(5);(6);(7)y=2x2;(8)

A. (2)(4) B. (2)(3)(5)(8) C. (2)(7)(8) D. (1)(3)(4)(6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某網(wǎng)店銷售某款童裝,每件售價60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價銷售.市場調(diào)查反映:每降價1元,每星期可多賣30件.已知該款童裝每件成本價40元,設(shè)該款童裝每件售價x元,每星期的銷售量為y件.

1)求yx之間的函數(shù)關(guān)系式;

2)當每件售價定為多少元時,每星期的銷售利潤最大,最大利潤多少元?

3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的平面直角坐標系中,OA1B1是邊長為2的等邊三角形,作B2A2B1OA1B1關(guān)于點B1成中心對稱,再作B2A3B3B2A2B1關(guān)于點B2成中心對稱,如此作下去,則B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形 ABCD 中,E BC 邊中點.

)已知:如圖,若 AE 平分BAD,AED=90°,點 F AD 上一點,AF=AB.求證:(1ABEAFE;(2AD=AB+CD

)已知:如圖,若 AE 平分BAD,DE 平分ADC,AED=120°,點 FG 均為 AD上的點,AF=ABGD=CD.求證:(1GEF 為等邊三角形;(2AD=AB+ BC+CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求證:相似三角形對應邊上的中線之比等于相似比.

要求:①根據(jù)給出的△ABC及線段A'B′,A′(A′=A),以線段A′B′為一邊,在給出的圖形上用尺規(guī)作出△A'B′C′,使得△A'B′C′∽△ABC,不寫作法,保留作圖痕跡;

②在已有的圖形上畫出一組對應中線,并據(jù)此寫出已知、求證和證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知直線與反比例函數(shù)的圖像交于點A,且點A的橫坐標為1,點Bx軸正半軸上一點,且

1)求反比例函數(shù)的解析式;

2)求點B的坐標;

3)先在的內(nèi)部求作點P,使點P的兩邊OA、OB的距離相等,且PA=PB.(不寫作法,保留作圖痕跡,在圖上標注清楚點P

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,點是邊上的點,平分,平分,有下列結(jié)論:①,②的中點,③,④,其中正確的有______.(填序號)

查看答案和解析>>

同步練習冊答案