【題目】如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=,下列結(jié)論:① △APD≌△AEB;② EB⊥ED;③ 點B到直線AE的距離為; ④,其中正確結(jié)論的序號是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
【答案】B
【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再結(jié)合已知條件利用SAS可證兩三角形全等;②利用①中的全等,可得∠APD=∠AEB,結(jié)合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;③過B作BF⊥AE,交AE的延長線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結(jié)合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;④連接BD,求出△ABD的面積,然后減去△BDP的面積即可.
解:①∵∠EAB+∠BAP=90°,
∠PAD十∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∵在△APD和△AEB中,
△APD≌△AEB(SAS);
故此選項成立;
②∵△APD=△AEB,
∴∠APD=∠AEB,
∵∠AEB=∠AEP+∠BEP,
∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE= 90°,
∴EB⊥ED;
故此選項成立;
③過B作BF⊥AE ,交AE的延長線于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
又∵BE=,
∴BF=EF=,
∴點B到直線AE的距離為,
故此選項不正確,
④如圖,連接BD,
在Rt△AEP中,
∵AE=AP=1,
∴EP=,
又∵PB=,
∴BE=,
∵△APD≌△AEB,
∴PD=BE=,
∴S△ABP+S△ADP=S△ABD-S△BDP=S正方形ABCD-×DP×BE=×(4+)-××=+,
故此選項不正確,
∴正確的有①②④,
∴B選項正確.
科目:初中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,y是x的反比例函數(shù)有( )
(1)y=3x;(2)y=﹣;(3)y=;(4)﹣xy=3;(5);(6);(7)y=2x﹣2;(8).
A. (2)(4) B. (2)(3)(5)(8) C. (2)(7)(8) D. (1)(3)(4)(6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)店銷售某款童裝,每件售價60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價銷售.市場調(diào)查反映:每降價1元,每星期可多賣30件.已知該款童裝每件成本價40元,設(shè)該款童裝每件售價x元,每星期的銷售量為y件.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當每件售價定為多少元時,每星期的銷售利潤最大,最大利潤多少元?
(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的平面直角坐標系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形 ABCD 中,E 為 BC 邊中點.
(Ⅰ)已知:如圖,若 AE 平分∠BAD,∠AED=90°,點 F 為 AD 上一點,AF=AB.求證:(1)△ABE≌AFE;(2)AD=AB+CD
(Ⅱ)已知:如圖,若 AE 平分∠BAD,DE 平分∠ADC,∠AED=120°,點 F,G 均為 AD上的點,AF=AB,GD=CD.求證:(1)△GEF 為等邊三角形;(2)AD=AB+ BC+CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】求證:相似三角形對應邊上的中線之比等于相似比.
要求:①根據(jù)給出的△ABC及線段A'B′,∠A′(∠A′=∠A),以線段A′B′為一邊,在給出的圖形上用尺規(guī)作出△A'B′C′,使得△A'B′C′∽△ABC,不寫作法,保留作圖痕跡;
②在已有的圖形上畫出一組對應中線,并據(jù)此寫出已知、求證和證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知直線與反比例函數(shù)的圖像交于點A,且點A的橫坐標為1,點B是x軸正半軸上一點,且⊥.
(1)求反比例函數(shù)的解析式;
(2)求點B的坐標;
(3)先在的內(nèi)部求作點P,使點P到的兩邊OA、OB的距離相等,且PA=PB.(不寫作法,保留作圖痕跡,在圖上標注清楚點P)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com