【題目】(已知:如圖,AB為⊙O的直徑,AC、BC為弦,點P為上一點,AB=10,AC:BC=3:4.
(1)當點P與點C關于直線AB對稱時(如圖1),求PC的長;
(2)當點P為的中點時(如圖2),求PC的長.
【答案】(1)PC=9.6;(2)PC=.
【解析】
(1)根據題意求得PC⊥AB,且CD=DP.然后根據勾股定理求出CD的長;
(2)過點B作BE⊥PC于點E,連接PB,由(1)問求出AC和BC的長,然后根據題干條件求出EP的長,即可求出PC.
(1)在⊙O中,如圖
∵AB是直徑,
∴
∵點P與點C關于AB對稱,
∴PC⊥AB,且CD=DP.
∴由三角形面積得:CDAB=ACBC.
∵AB=10,AC:BC=3:4,
∴由勾股定理求得AC=6,BC=8.
∴
∴PC=2CD=9.6;
(2)過點B作BE⊥PC于點E,連接PB,
由(1)得AC=6,BC=8.
∵點P為弧AB的中點,∴
在Rt△BEC中,可求得
∵∠A=∠P,
∴tan∠P=tan∠A.
∴
∴
∴
科目:初中數學 來源: 題型:
【題目】將一張透明的平行四邊形膠片沿對角線剪開,得到圖①中的兩張三角形膠片和.將這兩張三角形膠片的頂點B與頂點E重合,把繞點B順時針方向旋轉,這時AC與DF相交于點O.
(1)當旋轉至如圖②位置,點B(E),C,D在同一直線上時,∠AFD與∠DCA的數量關系是 .
(2)當繼續(xù)旋轉至如圖③位置時,(1)中的結論還成立嗎?請說明理由.
(3)在圖③中,連接BO,AD,探索BO與AD之間有怎樣的位置關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知∠MAN=120°,AC平分∠MAN.
(1)在圖1中,若∠ABC=∠ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠ABC+∠ADC=180°,則(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC三個頂點的坐標分別為A(﹣1,﹣1),B(﹣4,﹣2),C(﹣1,﹣4).
(1)點A關于y軸對稱的點的坐標是;
(2)畫出△ABC關于x軸對稱的△A1B1C1分別寫出點A1,B1,C1的坐標;
(3)求△A1B1C1的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車從A城出發(fā)沿相同的路線勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數關系如圖所示,則下列結論:①A、B兩城相距300千米;②乙車比甲車晚出發(fā)1小時,卻早到1小時;③乙車出發(fā)后2.5小時追上甲車;④當甲、乙兩車相距50千米時,t=或.其中正確的是________(填序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】王老師從學校出發(fā),到距學校的某商場去給學生買獎品,他先步行了后,換騎上了共享單車,到達商場時,全程總共剛好花了.已知王老師騎共享單車的平均速度是步行速度的3倍(轉換出行方式時,所需時間忽略不計).
(1)求王老師步行和騎共享單車的平均速度分別為多少?
(2)買完獎品后,王老師原路返回,為按時上班,路上所花時間最多只剩10分鐘,若王老師仍采取先步行,后換騎共享單車的方式返回,問:他最多可步行多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一個面積為1的正方形,經過一次“生長”后,在它的左右肩上生出了2個小正方形(如圖①),其中,3個正方形圍成的三角形是直角三角形.再經過一次“生長”后,又生出了4個小正方形(如圖②),如果按此規(guī)律繼續(xù)“生長”下去,它將變得“枝繁葉茂”,在“生長”了2019次后形成的圖形中所有正方形的面積和是( 。
A.2018B.2019C.2020D.2021
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A在y軸正半軸上,點B與點C都在x軸上,且點B在點C的左側,滿足BC=OA,若-3am-1b2與anb2n-2是同類項且OA=m,OB=n.
(1)m= ;n= .
(2)點C的坐標是 .
(3)若坐標平面內存在一點D,滿足△BCD全等△ABO,試求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線,下列結論:①;②;③;④當時, 隨的增大而增大.其中正確的結論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com