【題目】如圖①,定義:直線(xiàn) (m<0, n>0) 與x、y軸分別相交于A、B兩點(diǎn),將△AOB繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△COD,過(guò)點(diǎn)A、B、D的拋物線(xiàn)P叫做直線(xiàn)l的“糾纏拋物線(xiàn)”,反之,直線(xiàn)l叫做P的“糾纏直線(xiàn)”,兩線(xiàn)“互為糾纏線(xiàn)”。
(1) 若,則糾纏拋物線(xiàn)P的函數(shù)解析式是 .
(2) 判斷并說(shuō)明與是否“互為糾纏線(xiàn)”.
(3) 如圖②,若糾纏直線(xiàn),糾纏拋物線(xiàn)P的對(duì)稱(chēng)軸與CD相交于點(diǎn)E,點(diǎn)F在l上,點(diǎn)Q在P的對(duì)稱(chēng)軸上,當(dāng)以點(diǎn)C、E、Q、F為頂點(diǎn)的四邊形是以CE為一邊的平行四邊形時(shí),求點(diǎn)Q的坐標(biāo).
(4) 如圖③,在(3)的條件下,G為線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn),G點(diǎn)隨著△AOB旋轉(zhuǎn)到線(xiàn)段CD上的H點(diǎn),連接H、G,取HG的中點(diǎn)M,當(dāng)點(diǎn)G從A開(kāi)始運(yùn)動(dòng)到B點(diǎn),直接寫(xiě)出點(diǎn)M的運(yùn)動(dòng)路徑長(zhǎng)。
【答案】解:(1);(2)詳見(jiàn)解析;(3)Q點(diǎn)坐標(biāo)為或;(4)M的運(yùn)動(dòng)路徑長(zhǎng)為
【解析】
(1)根據(jù)題意及直線(xiàn)l解析式可得A,B,D坐標(biāo),用待定系數(shù)法可求拋物線(xiàn)P的函數(shù)解析式;
(2)分別在x=0時(shí)和y=0時(shí),求兩函數(shù)與坐標(biāo)軸交點(diǎn),然后根據(jù)“互為糾纏線(xiàn)”的定義進(jìn)行判斷;
(3)以點(diǎn)C,E,Q,F為頂點(diǎn)的四邊形是以CE為一邊的平行四邊形時(shí),則有FQ∥CE,且FQ=CE.以此為基礎(chǔ),列方程求出點(diǎn)Q的坐標(biāo);
(4)如圖,過(guò)點(diǎn)H,G分別作HJ⊥x軸,GK⊥x軸,由旋轉(zhuǎn)的性質(zhì)可證明△HJO≌△OKG,則可以設(shè)點(diǎn)G(m,-2m+4)(0≤m≤2), H(2m-4,m),得到M點(diǎn)坐標(biāo)為(),從而確定出點(diǎn)M在直線(xiàn)(-2≤x≤1)上運(yùn)動(dòng),然后根據(jù)兩點(diǎn)間距離公式易得結(jié)果.
解:(1)若,則A(1,0),B(0,2),D(-2,0),
設(shè)拋物線(xiàn)解析式為:y=a(x-1)(x+2),
將B(0,2)代入可得:a=-1,
∴拋物線(xiàn)解析式為:y=-(x-1)(x+2)=;
(2)當(dāng)x=0時(shí),,,
∴兩函數(shù)圖像交于y軸(0,2k),
當(dāng)y=0時(shí),①,解得:x=k,
②,解得:,,
∴兩函數(shù)圖像交于x軸(k,0),且OB=OD,
∴與“互為糾纏線(xiàn)”;
(3)若,則A(2,0),B(0,4),C(0,2),D(-4,0),
求得直線(xiàn)CD的解析式為:y=,
可求得P的對(duì)稱(chēng)軸為.
∵以點(diǎn)C,E,Q,F為頂點(diǎn)的四邊形是以CE為一邊的平行四邊形,
∴FQ∥CE,且FQ=CE.
設(shè)直線(xiàn)FQ的解析式為:y=,
∵點(diǎn)E、點(diǎn)C的橫坐標(biāo)相差1,
∴點(diǎn)F、點(diǎn)Q的橫坐標(biāo)也是相差1.
則|xF(1)|=|xF+1|=1,
解得xF=0或xF=2.
∵點(diǎn)F在直線(xiàn)l:y=2x+4上,
∴點(diǎn)F坐標(biāo)為(0,4)或(2,8).
若F(0,4),則直線(xiàn)FQ為:y=+4,
當(dāng)x=1時(shí),y=,
∴Q1(1,);
若F(2,8),則直線(xiàn)FQ為:y=x+9,
當(dāng)x=1時(shí),y=,
∴Q2(1,).
∴滿(mǎn)足條件的點(diǎn)Q有2個(gè),點(diǎn)Q坐標(biāo)為Q1(1,), Q2(1,).
(4)如圖,過(guò)點(diǎn)H,G分別作HJ⊥x軸,GK⊥x軸,
∵OH=OG,∠HOG=90°,
∴∠HOJ+∠GOK=90°,
∵∠HOJ+∠JHO=90°,
∴∠GOK=∠JHO,
又∵∠HJO=∠OKG=90°,
∴△HJO≌△OKG,
設(shè)點(diǎn)G(m,-2m+4)(0≤m≤2),則H(2m-4,m)
∴M(),
令,
∴,
∴,
∵0≤m≤2,
∴-2≤x≤1,
∴點(diǎn)M在直線(xiàn)(-2≤x≤1)上運(yùn)動(dòng),
當(dāng)x=1時(shí),y=,
當(dāng)x=-2時(shí),y=,
∴M的運(yùn)動(dòng)路徑長(zhǎng)=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線(xiàn)BD經(jīng)過(guò)坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)的圖象上.若點(diǎn)A的坐標(biāo)為(﹣4,﹣4),則k的值為( 。
A. 16B. ﹣3C. 5D. 5或﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A1(1,)在直線(xiàn)y=kx上,過(guò)點(diǎn)A1作A1B1∥y軸交直線(xiàn)y=x于點(diǎn)B1,以A1B1為邊在A1B1的右側(cè)作正方形A1B1C1D1,直線(xiàn)C1D1分別交直線(xiàn)y=kx和y=x于A2,B2兩點(diǎn),以A2B2為邊在A2B2的右側(cè)作等正方形A2B2C2D2…,直線(xiàn)C2D2分別交直線(xiàn)y=kx和y=x于A3,B3兩點(diǎn),以A3B3為邊在A3B3的右側(cè)作正方形A3B3C3D3,…,按此規(guī)律進(jìn)行下去,則正方形AnBnCnDn的面積為____________.(用含正整數(shù)n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“高低杠”是女子體操特有的一個(gè)競(jìng)技項(xiàng)目,其比賽器材由高、低兩根平行杠及若干支架組成,運(yùn)動(dòng)員可根據(jù)自己的身高和習(xí)慣在規(guī)定范圍內(nèi)調(diào)節(jié)高、低兩杠間的距離.某興趣小組根據(jù)高低杠器材的一種截面圖編制了如下數(shù)學(xué)問(wèn)題,請(qǐng)你解答.
如圖所示,底座上A,B兩點(diǎn)間的距離為90cm.低杠上點(diǎn)C到直線(xiàn)AB的距離CE的長(zhǎng)為155cm,高杠上點(diǎn)D到直線(xiàn)AB的距離DF的長(zhǎng)為234cm,已知低杠的支架AC與直線(xiàn)AB的夾角∠CAE為82.4°,高杠的支架BD與直線(xiàn)AB的夾角∠DBF為80.3°.求高、低杠間的水平距離CH的長(zhǎng).(結(jié)果精確到1cm,參考數(shù)據(jù)sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了貫徹落實(shí)《關(guān)于開(kāi)展全市義務(wù)教育學(xué)生體質(zhì)抽測(cè)工作的通知》精神,推進(jìn)青少年茁壯成長(zhǎng)工程,我市決定繼續(xù)開(kāi)展市直初中生體質(zhì)抽測(cè)工作。我校初三某班被抽中,已知各人選測(cè)項(xiàng)目為下列選項(xiàng)中的任意一項(xiàng):引體向上(男生)、仰臥起坐(女生)、立定跳遠(yuǎn)(男、女生),坐位體前屈(男、女生)。
(1)男生小磊抽測(cè)引體向上的概率是 ;
(2)用樹(shù)狀圖或列表法求男生小磊與女生小銘恰好都抽測(cè)坐位體前屈的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱(chēng)軸為直線(xiàn)x=﹣1,給出以下結(jié)論:①abc<0 ②b2﹣4ac>0 ③4b+c<0 ④若B(﹣,y1)、C(﹣,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2⑤當(dāng)﹣3≤x≤1時(shí),y≥0,
其中正確的結(jié)論是(填寫(xiě)代表正確結(jié)論的序號(hào))__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“單詞的記憶效率”是指復(fù)習(xí)一定量的單詞,一周后能正確默寫(xiě)出的單詞個(gè)數(shù)與復(fù)習(xí)的單詞個(gè)數(shù)的比值.右圖描述了某次單詞復(fù)習(xí)中四位同學(xué)的單詞記憶效率與復(fù)習(xí)的單詞個(gè)數(shù)的情況,則這四位同學(xué)在這次單詞復(fù)習(xí)中正確默寫(xiě)出的單詞個(gè)數(shù)最多的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某海監(jiān)船以20海里/小時(shí)的速度在某海域執(zhí)行巡航任務(wù),當(dāng)海監(jiān)船由西向東航行至A處時(shí),測(cè)得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時(shí)到達(dá)B處,測(cè)得島嶼P在其北偏西30°方向,保持航向不變又航行2小時(shí)到達(dá)C處,此時(shí)海監(jiān)船與島嶼P之間的距離(即PC的長(zhǎng))為( 。
A. 40海里 B. 60海里 C. 20海里 D. 40海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0),過(guò)(1,y1)、(2,y2).下列結(jié)論:①若y1>0時(shí),則a+b+c>0; ②若a=2b時(shí),則y1<y2;③若y1<0,y2>0,且a+b<0,則a>0.其中正確的結(jié)論個(gè)數(shù)為( 。
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com