【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A,點(diǎn)B,點(diǎn)C是y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)∠BCA=30°時(shí),點(diǎn)C的坐標(biāo)為______.
【答案】(0,),(0,)
【解析】
(1)如圖1,以AB為邊在x軸的上方作等邊△PAB,再以點(diǎn)P為圓心,PA為半徑作圓P,交y軸的正半軸于點(diǎn)C,連接BC、AC,則此時(shí)∠BCA=30°,再根據(jù)題中的已知條件求得線段OC的長,即可得到此時(shí)點(diǎn)C的坐標(biāo);
(2)如圖2,和(1)同理在y軸的負(fù)半軸可求得另一個(gè)符合要求的點(diǎn)C的坐標(biāo).
(1)如圖1,以AB為邊在x軸的上方作等邊△PAB,則∠APB=60°,再以點(diǎn)P為圓心,PA為半徑作圓P,交y軸的正半軸于點(diǎn)C,連接BC、AC,則此時(shí)由∠APB=60°可得∠BCA=30°,
∵點(diǎn)A、B的坐標(biāo)分別為:,,
∴AB=,OB=
∴PA=PC=AB=,
過點(diǎn)P作PF⊥y軸于點(diǎn)F,PE⊥x軸于點(diǎn)E,則四邊形PEOF是矩形,
∴OF=PE,PF=OE,
∵在等邊△PAB中,PE=PA·sin60°=,BE=AB=,
∴OF=12,OE=OB-BE=,
∴PF=,
又∵在Rt△PFC中,PC=,∠PFC=90°,
∴CF=,
∴OC=OF+CF=,
∴此時(shí)點(diǎn)C的坐標(biāo)為;
(2)如圖2,以AB為邊在x軸的下方作等邊△PAB,則∠APB=60°,再以點(diǎn)P為圓心,PA為半徑作圓P,交y軸的負(fù)半軸于點(diǎn)C,連接BC、AC,則此時(shí)由∠APB=60°可得∠BCA=30°,和(1)同理可得此時(shí)點(diǎn)C的坐標(biāo)為:;
綜上所述,符合條件的點(diǎn)C的坐標(biāo)為或,
故答案為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在路燈下,小明的身高如圖中線段AB所示,他在地面上的影子如圖中線段AC所示,小亮的身高如圖中線段FG所示,路燈燈泡在線段DE上.
(1)請你確定燈泡所在的位置,并畫出小亮在燈光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子長AC=1.4m,且他到路燈的距離AD=2.1m,求燈泡的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BF,EF與對角線AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。
(1)求證:OE=OF;
(2)若BC=,求AB的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠DAB=60°,AB=2AD,點(diǎn)E、F分別是AB、CD的中點(diǎn),過點(diǎn)A作AG∥BD,交CB的延長線于點(diǎn)G.
(1)求證:四邊形DEBF是菱形;
(2)請判斷四邊形AGBD是什么特殊四邊形? 并加以證明;
(3)若AD=1,求四邊形AGCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)家趙爽“的勾股圓方圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a、b,那么 的值為( ).
A. 49 B. 25 C. 13 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口P,4小時(shí)后貨船在小島的正東方向.求貨船的航行速度.(精確到0.1海里/時(shí),參考數(shù)據(jù):≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,OP是∠MON的平分線,點(diǎn)A為OP上一點(diǎn),請你作一個(gè)∠BAC,B、C分別在OM、ON上,且使AO平分∠BAC(保留作圖痕跡);
(2)如圖②,在△ABC中,∠ACB是直角,∠B=60°,△ABC的平分線AD,CE相交于點(diǎn)F,請你判斷FE與FD之間的數(shù)量關(guān)系(可類比(1)中的方法);
(3)如圖③,在△ABC中,如果∠ACB≠90°,而(2)中的其他條件不變,請問(2)中所得的結(jié)論是否仍然成立?若成立,請證明,若不成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅球1、紅球2)、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.
(1)從中任意摸出1個(gè)球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出1個(gè)球,再從余下的3個(gè)球中任意摸出1個(gè)球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD,點(diǎn)F是BC上的一點(diǎn),連接AF,∠FAD=60°,AE平分∠FAD,交CD于點(diǎn)E,且點(diǎn)E是CD的中點(diǎn),連接EF,已知AD=5,CF=3,則EF=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com