【題目】我國古代數(shù)學家趙爽的勾股圓方圖是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a、b,那么 的值為( ).

A. 49 B. 25 C. 13 D. 1

【答案】A

【解析】

本題主要考查了勾股定理. 根據(jù)正方形的面積公式以及勾股定理,結合圖形進行分析發(fā)現(xiàn):大正方形的面積即直角三角形斜邊的平方25,也就是兩條直角邊的平方和是25,四個直角三角形的面積和是大正方形的面積減去小正方形的面積即2ab=24.根據(jù)完全平方公式即可求解.

解:根據(jù)題意,結合勾股定理a2+b2=25

四個三角形的面積=4×ab=25-1,

∴2ab=24,

聯(lián)立解得:(a+b2=25+24=49

故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,ABC=90°,AB為直徑的⊙OAC交于點D,EBC的中點,連接BD,DE.

(1),sinC;

(2)求證:DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將進貨單價為元的商品按元售出時,就能賣出個.已知這種商品每個漲價元,其銷售量就減少,問為了賺得元的利潤,而成本價又不高于元,售價應定為多少?這時應進貨多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,EBC是等邊三角形,則∠AED的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一塊等腰直角三角形零件(ABC,其中∠ACB90°),放置在一凹槽內(nèi),三個頂點A,B,C分別落在凹槽內(nèi)壁上,已知∠ADE=∠BED90°,測得AD5cm,BE7cm,求該三角形零件的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點A,點B,點Cy軸上的一個動點,當∠BCA=30°時,點C的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D是邊AC上一點,連BD,給出下列條件:①∠ABD=ACB;AB2=ADAC;ADBC=ABBD;ABBC=ACBD.其中單獨能夠判定△ABC∽△ADB的個數(shù)是(

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線ACBD交于點O.過點CBD的平行線,過點DAC的平行線,兩直線相交于點E.

(1)求證:四邊形OCED是矩形;

(2)若CE=1,DE=2,ABCD的面積是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是二次函數(shù) yax2bxca0)的圖象的一部分, 給出下列命題 :①a+b+c=0;②b2a;③ax2+bx+c=0的兩根分別為-31;④a2b+c0.其中正確的命題是__________.(只要求填寫正確命題的序號)

查看答案和解析>>

同步練習冊答案