【題目】已知在△ABC中,∠ABC和∠ACB的角平分線交于O,且∠ABC的角平分線與∠ACB的外角平分線交于P,∠OPC和∠OCP角平分線交于H,∠H=117.5°,則∠A=________

【答案】70°

【解析】

根據(jù)三角形內(nèi)角和定理,可得∠HCP+HPC=62.5°,由角平分線的性質(zhì),得∠OCP+OPC=125°,由三角形外角性質(zhì),得到∠BOC的度數(shù),然后∠OBC+OCB=55°,然后可以計算得到∠A的度數(shù).

解:∵∠H=117.5°,

∴∠HCP+HPC=180°-117.5°=62.5°,

CH平分∠OCP,PH平分∠OPC

∴∠OCP+OPC=2(∠HCP+HPC= 125°,

∴∠BOC=125°,

∴∠OBC+∠OCB=180°-125°=55°,

BO平分∠ABC,CO平分∠ACB,

∴∠ABC+ACB=2(∠OBC+OCB=110°,

∴∠A=180°-110°=70°;

故答案為:70°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技的進步和網(wǎng)絡資源的豐富,在線學習已成為更多人的自主學習選擇.某校計劃為學生提供以下四類在線學習方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學生需求,該校隨機對本校部分學生進行了你對哪類在線學習方式最感興趣的調(diào)查,并根據(jù)調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)圖中信息,解答下列問題:

1)求本次調(diào)查的學生總人數(shù),并補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中在線討論對應的扇形圓心角的度數(shù);

3)該校共有學生人,請你估計該校對在線閱讀最感興趣的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為銳角ABC的外接圓半徑為5.

(1)用尺規(guī)作圖作出∠BAC的平分線,并標出它與劣弧BC的交點E(保留作圖痕跡,不寫作法);

(2)若(1)中的點E到弦BC的距離為3,求弦CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,C=90°,O,D分別為AB,BC上的點,經(jīng)過A,D兩點的⊙O分別交AB,AC于點E,F(xiàn),D為弧EF的中點.

(1)求證:BC與⊙O相切;

(2)當⊙O的半徑r=2,CAD=30°求劣弧AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段MN=3cm,在線段MN上取一點P,使PMPN;延長線段MN到點A,使ANMN;延長線段NM到點B,使BN=3BM.

(1)根據(jù)題意,畫出圖形;

(2)求線段AB的長;

(3)試說明點P是哪些線段的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店,甲種筆記本標價每本8元,乙種筆記本標價每本5元.今天,甲、乙兩種筆記本合計賣了100本,共賣了695!

1)兩種筆記本各銷售了多少?

2)所得銷售款可能是660元嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】南開兩江中學校初一年級在318日聽了一堂樹的暢想的景觀設計課,隨后在本年級學生中進行了活動收獲度調(diào)查,采取隨機抽樣的調(diào)查方式進行網(wǎng)絡問卷調(diào)查,問卷調(diào)查的結果分為非常有收獲”“比較有收獲”“收獲一般”“沒有太大的收獲四個等級,分別記作A、B、C、D并根據(jù)調(diào)查結果繪制兩幅不完整統(tǒng)計圖:

1)這次一共調(diào)查了_______名學生,并將條形統(tǒng)計圖補充完整

2)請在參與調(diào)查的這些學生中,隨機抽取一名學生,求抽取到的學生對這次樹的暢想的景觀設計課活動收獲度是收獲一般或者沒有太大的收獲的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,PA是⊙O的切線,點C在⊙O上,CBPO

1)判斷PC與⊙O的位置關系,并說明理由;

2)若AB=6,CB=4,求PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛汽車行駛時的耗油量為0.1/千米,如圖是油箱剩余油量(升)關于加滿油后已行駛的路程(千米)的函數(shù)圖象.

(1)根據(jù)圖象,直接寫出汽車行駛400千米時,油箱內(nèi)的剩余油量,并計算加滿油時油箱的油量;

(2)求關于的函數(shù)關系式,并計算該汽車在剩余油量5升時,已行駛的路程.

查看答案和解析>>

同步練習冊答案