【題目】如圖,己知,任取一點,連,,并取它們的中點,,得,則下列說法正確的個數(shù)是(

是位似圖形;是相似圖形;

的周長比為;④的面積比為

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

根據(jù)位似圖形的性質(zhì),得出①△ABC與△DEF是位似圖形進而根據(jù)位似圖形一定是相似圖形得出 ②△ABC與△DEF是相似圖形,再根據(jù)周長比等于位似比,以及根據(jù)面積比等于相似比的平方,即可得出答案.

解:根據(jù)位似性質(zhì)得出①△ABC與△DEF是位似圖形,

②△ABC與△DEF是相似圖形,

∵將△ABC的三邊縮小的原來的

∴△ABC與△DEF的周長比為2:1,

故③選項錯誤,

根據(jù)面積比等于相似比的平方,

∴④△ABC與△DEF的面積比為4:1.

故選:C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我市舉行八年級“生活中的數(shù)學知識”競賽活動,甲、乙兩校分別派五名同學參加競賽,其成績分別是(單位:分):甲校五名同學:,,,;乙校五名同學:,,.根據(jù)以上數(shù)據(jù)解答下列問題:

把表格空格填完整:

學校

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

甲校五位同學

________

________

乙校五位同學

________

根據(jù)上述數(shù)據(jù),請你分析哪所學校同學的競賽成績相對較好?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是邊長為的正方形對角線上一動點(不重合),點在線段上,且

求證:;②

,的面積為

求出關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;

取何值時,取得最大值,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在平面直角坐標系中的位置如圖所示.

1)畫出△ABC關(guān)于y 軸對稱的△A1B1C1,并寫出A1、B1C1的坐標.

2)將△ABC向右平移6個單位,畫出平移后的△A2B2C2;

3)觀察△A1B1C1和△A2B2C2,它們是否關(guān)于某直線對稱?若是,請在圖上畫出這條對稱軸.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,弦、分別是的平分線與的交點,延長線上一點,且

的長;

試判斷直線的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,正方形的位置如圖所示,點的坐標為,點的坐標為.延長軸于點,作正方形;延長軸于點,作正方形,按這樣的規(guī)律進行下去,第個正方形(正方形看作第個)的面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將正面分別寫著數(shù)字1,2,3的三張卡片(注:這三張卡片的形狀、大小、質(zhì)地,顏色等其他方面完全相同,若背面上放在桌面上,這三張卡片看上去無任何差別)洗勻后,背面向上放在桌面上,從中先隨機抽取一張卡片,記該卡片上的數(shù)字為x,再把剩下的兩張卡片洗勻后,背面向上放在桌面上,再從這兩張卡片中隨機抽取一張卡片,記該卡片上的數(shù)字為y.

(1)用列表法或樹狀圖法(樹狀圖也稱樹形圖)中的一種方法,寫出(x,y)所有可能出現(xiàn)的結(jié)果.

(2)求取出的兩張卡片上的數(shù)字之和為偶數(shù)的概率P.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正三角形ABC的邊長AB480毫米.一質(zhì)點D從點B出發(fā),沿BA方向,以每秒鐘10毫米的速度向點A運動.

(1)建立合適的直角坐標系,用運動時間t(秒)表示點D的坐標;

(2)過點D在三角形ABC的內(nèi)部作一個矩形DEFG,其中EFBC邊上,GAC邊上.在圖中找出點D,使矩形DEFG是正方形(要求所表達的方式能體現(xiàn)出找點D的過程);

(3)過點D、B、C作平行四邊形,當t為何值時,由點C、B、D、F組成的平行四邊形的面積等于三角形ADC的面積,并求此時點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△

1)在圖中用直尺和圓規(guī)作出的平分線和邊的垂直平分線交于點(保留作圖痕跡,不寫作法).

2)在(1)的條件下,若點、分別是邊上的點,且,連接求證:

3)如圖,在(1)的條件下,點、分別是邊上的點,且△的周長等于邊的長,試探究的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習冊答案