【題目】(2016山西省第22題)綜合與實(shí)踐
問題情境
在綜合與實(shí)踐課上,老師讓同學(xué)們以“菱形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng),如圖1,將一張菱形紙片ABCD()沿對(duì)角線AC剪開,得到和.
操作發(fā)現(xiàn)
(1)將圖1中的以A為旋轉(zhuǎn)中心,逆時(shí)針方向旋轉(zhuǎn)角,使 ,得到如圖2所示的,分別延長(zhǎng)BC 和交于點(diǎn)E,則四邊形的狀是 ;
(2)創(chuàng)新小組將圖1中的以A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)角,使,得到如圖3所
示的,連接DB,,得到四邊形,發(fā)現(xiàn)它是矩形.請(qǐng)你證明這個(gè)論;
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,量得圖3中BC=13cm,AC=10cm,然后提出一個(gè)問題:將沿著射線DB方向平移acm,得到,連接,,使四邊形恰好為正方形,求a的值.請(qǐng)你解答此問題;
(4)請(qǐng)你參照以上操作,將圖1中的在同一平面內(nèi)進(jìn)行一次平移,得到,在圖4中畫出平移后構(gòu)造出的新圖形,標(biāo)明字母,說明平移及構(gòu)圖方法,寫出你發(fā)現(xiàn)的結(jié)論,不必證明.
【答案】(1)、菱形;(2)、證明過程見解析;(3)、或;(4)、平行四邊形.
【解析】
試題分析:(1)、利用旋轉(zhuǎn)的性質(zhì)和菱形的判定證明;(2)、利用旋轉(zhuǎn)的性質(zhì)以及矩形的判定證;(3)、利用平移行性質(zhì)和正方形的判定證明,需注意射線這個(gè)條件,所以需要分兩種情況當(dāng)點(diǎn)在邊上和點(diǎn)在邊的延長(zhǎng)線上時(shí);(4)、開放型題目,答對(duì)即可.
試題解析:(1)、菱形
(2)、作于點(diǎn)E. 由旋轉(zhuǎn)得,.
四邊形ABCD是菱形,,,,,
同理,,又, 四邊形是平行四邊形,
又,,, ∴四邊形是矩形
(3)、過點(diǎn)B作,垂足為F,, .
在Rt 中,,
在和中,, .
∽,,即,解得,
,,.
當(dāng)四邊形恰好為正方形時(shí),分兩種情況:
①點(diǎn)在邊上..
②點(diǎn)在邊的延長(zhǎng)線上,
綜上所述,a的值為或.
(4)、答案不唯一.
平移及構(gòu)圖方法:將沿著射線CA方向平移,平移距離為的長(zhǎng)度,得到,連接.
結(jié)論:四邊形是平行四邊形
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制度.若每月用水量不超過14噸(含14噸),則每噸按政府補(bǔ)貼優(yōu)惠價(jià)m元收費(fèi);若每月用水量超過14噸,則超過部分每噸按市場(chǎng)價(jià)n元收費(fèi).小明家3月份用水20噸,交水費(fèi)49元;4月份用水18噸,交水費(fèi)42元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場(chǎng)價(jià)分別是多少?
(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,請(qǐng)寫出y與x之間的函數(shù)關(guān)系式;
(3)小明家5月份用水26噸,則他家應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由長(zhǎng)度為1個(gè)單位的若干小正方形組成的網(wǎng)格圖中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
(1)在圖中畫出與△ABC關(guān)于直線l成軸對(duì)稱的△AB′C′;
(2)三角形ABC的面積為
(3)以AC為邊作與△ABC全等的三角形(只要作出一個(gè)符合條件的三角形即可);
(4)在直線l上找一點(diǎn)P,使PB+PC的長(zhǎng)最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016浙山東省泰安市第20題)如圖,正△ABC的邊長(zhǎng)為4,點(diǎn)P為BC邊上的任意一點(diǎn)(不與點(diǎn)B、C重合),且∠APD=60°,PD交AB于點(diǎn)D.設(shè)BP=x,BD=y,則y關(guān)于x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】命題“如果兩個(gè)角相等,那么它們都是直角”的逆命題是( )
A.如果兩個(gè)角不相等,那么它們都不是直角
B.如果兩個(gè)角都不是直角,那么這兩個(gè)角不相等
C.如果兩個(gè)角都是直角,那么這兩個(gè)角相等
D.相等的兩個(gè)角都是直角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km,寫出表示y與x的函數(shù)關(guān)系的式子_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知開口向下的拋物線y1=ax2﹣2ax+1過點(diǎn)A(m,1),與y軸交于點(diǎn)C,頂點(diǎn)為B,將拋物線y1繞點(diǎn)C旋轉(zhuǎn)180°后得到拋物線y2,點(diǎn)A,B的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D,E.
(1)直接寫出點(diǎn)A,C,D的坐標(biāo);
(2)當(dāng)四邊形ABCD是矩形時(shí),求a的值及拋物線y2的解析式;
(3)在(2)的條件下,連接DC,線段DC上的動(dòng)點(diǎn)P從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng)到點(diǎn)C停止,在點(diǎn)P運(yùn)動(dòng)的過程中,過點(diǎn)P作直線l⊥x軸,將矩形ABDE沿直線l折疊,設(shè)矩形折疊后相互重合部分面積為S平方單位,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t的函數(shù)關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com