如圖,△ABC是⊙O的內(nèi)接三角形,⊙O的直徑BD交AC于點(diǎn)E,AF⊥BD與點(diǎn)F,延長(zhǎng)AF交BC于點(diǎn)G.求證:AB2=BG·BC
見(jiàn)解析.
【解析】
試題分析:因?yàn)橹睆剿鶎?duì)的圓周角是直角,所以作輔助線:連接AD;利用同角的余角相等,可得∠BAG=∠D,又由同弧所對(duì)的圓周角相等,可得∠C=∠D,證得∠C=∠BAG,又因?yàn)椤螦BG是公共角,即可證得△ABG∽△CBA;由相似三角形的對(duì)應(yīng)邊成比例,即可證得AB2=BG•BC.
試題解析:
證明:延長(zhǎng)AF交圓于H
∵BD直徑,AF⊥BD于點(diǎn)F
∴=
∴∠1=∠C
又∠ABG=∠ABC,
∴△ABG∽△CBA
∴
∴AB2=BG·BC.
考點(diǎn):1.相似三角形的判定與性質(zhì);2.圓周角定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
AB |
AF |
AE |
AC |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com