【題目】如圖,在中,
和
的平分線相交于點(diǎn)O,過O點(diǎn)作
交AB于點(diǎn)E,交AC于點(diǎn)F,過點(diǎn)O作
于D,下列四個(gè)結(jié)論.
點(diǎn)O到
各邊的距離相等
設(shè)
,
,則
,正確的結(jié)論有
個(gè).
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
【答案】D
【解析】
由在中,
和
的平分線相交于點(diǎn)O,根據(jù)角平分線的定義與三角形內(nèi)角和定理,即可求得
A正確;由平行線的性質(zhì)和角平分線的定義得出
和
是等腰三角形得出
故
正確;由角平分線的性質(zhì)得出點(diǎn)O到
各邊的距離相等,故
正確;由角平分線定理與三角形面積的求解方法,即可求得
設(shè)
,
,則
,故
正確.
解:在
中,
和
的平分線相交于點(diǎn)O,
,
,
,
,
;故
正確;
在
中,
和
的平分線相交于點(diǎn)O,
,
,
,
,
,
,
,
,
,
,
故正確;
過點(diǎn)O作于M,作
于N,連接OA,
在
中,
和
的平分線相交于點(diǎn)O,
,
;故
正確;
在
中,
和
的平分線相交于點(diǎn)O,
點(diǎn)O到
各邊的距離相等,故
正確.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AB=5,AC=6,過點(diǎn)D作AC的平行線交BC的延長線于點(diǎn)E,則△BDE的面積為( )
A.22
B.24
C.48
D.44
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為等邊三角形
內(nèi)一點(diǎn),連接
,
,
,以
為一邊作
,且
,連接
、
.
(1)判斷與
的大小關(guān)系并證明;
(2)若,
,
,判斷
的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在三角形中,把一邊的中點(diǎn)到這條邊的高線的距離叫做這條邊的中垂距.
例:如圖①,在△ABC中,D為邊BC的中點(diǎn),AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.
(1)設(shè)三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是 , 推斷的數(shù)學(xué)依據(jù)是 .
(2)如圖②,在△ABC中,∠B=45°,AB= ,BC=8,AD為邊BC的中線,求邊BC的中垂距.
(3)如圖③,在矩形ABCD中,AB=6,AD=4.點(diǎn)E為邊CD的中點(diǎn),連結(jié)AE并延長交BC的延長線于點(diǎn)F,連結(jié)AC.求△ACF中邊AF的中垂距.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對(duì)角線AC與BD交于點(diǎn)O,若增加一個(gè)條件,使ABCD成為菱形,下列給出的條件不正確的是( )
A.AB=AD
B.AC⊥BD
C.AC=BD
D.∠BAC=∠DAC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,A(a,0)、B(0,b),a、b滿足 +|a3
|=0.C為AB的中點(diǎn),P是線段AB上一動(dòng)點(diǎn),D是x軸正半軸上一點(diǎn),且PO=PD,DE⊥AB于E.
(1)求∠OAB的度數(shù);
(2)設(shè)AB=6,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),PE的值是否變化?若變化,說明理由;若不變,請(qǐng)求PE的值;
(3)設(shè)AB=6,若∠OPD=45°,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在3×3的方格中,A,B,C,D,E,F(xiàn)分別位于格點(diǎn)上,從C,D,E,F(xiàn)四點(diǎn)中任意取一點(diǎn),與點(diǎn)A,B為頂點(diǎn)作三角形,則所作三角形為等腰三角形的概率是( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-2,0),(6,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移4個(gè)單位,再向右平移2個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C、D,連接AC、BD.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABDC
(2)在y軸上是否存在一點(diǎn)P,連接PA、PB,使S△PAB=S四邊形ABDC,若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說明理由.
(3)點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PC,PO,當(dāng)點(diǎn)P在BD上移動(dòng)時(shí)(不與B,D重合)給出下列結(jié)論:①的值不變;②
的值不變,其中有且只有一個(gè)是正確的,請(qǐng)你找出這個(gè)結(jié)論并求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年國際馬拉松賽于承德市舉辦,起點(diǎn)承德市獅子園,賽道為外環(huán)路,終點(diǎn)為奧體中心(賽道基本為直線).在賽道上有A,B兩個(gè)服務(wù)點(diǎn),現(xiàn)有甲,乙兩個(gè)服務(wù)人員,分別從A,B兩個(gè)服務(wù)點(diǎn)同時(shí)出發(fā),沿直線勻速跑向終點(diǎn)C(奧體中心),如圖1所示,設(shè)甲、乙兩人出發(fā)xh后,與B點(diǎn)的距離分別為y甲km、y乙km,y甲、y乙與x的函數(shù)關(guān)系如圖2所示.
(1)從服務(wù)點(diǎn)A到終點(diǎn)C的距離為km,a=h;
(2)求甲乙相遇時(shí)x的值;
(3)甲乙兩人之間的距離應(yīng)不超過1km時(shí),稱為最佳服務(wù)距離,從甲、乙相遇到甲到達(dá)終點(diǎn)以前,保持最佳服務(wù)距離的時(shí)間有多長?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com