【題目】(10分)如圖,在矩形ABCD中,E,F(xiàn)為BC上兩點,且BE=CF,連接AF,DE交于點O.

求證:(1)△ABF≌△DCE;

(2)△AOD是等腰三角形.

【答案】(1)見解析;(2)見解析

【解析】試題分析:(1)根據(jù)矩形的性質(zhì)可得∠B=∠C=90°,AB=DC,然后求出BF=CE,再利用邊角邊證明△ABF△DCE全等即可;

2)根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠EDC,然后求出∠DAF=∠EDA,然后根據(jù)等腰三角形的定義證明即可.

試題解析:(1)在矩形ABCD中,∠B=∠C=90°AB=DC,

∵BE=CF,BF=BC-FCCE=BC-BE,

∴BF=CE,

△ABF△DCE中,

∴△ABF≌△DCESAS);

2∵△ABF≌△DCE,

∴∠BAF=∠EDC

∵∠DAF=90°-∠BAF,∠EDA=90°-∠EDC,

∴∠DAF=∠EDA,

∴△AOD是等腰三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線a經(jīng)過正方形ABCD的頂點A,分別過頂點B,DDEa于點E,BFa于點F,若DE=4,BF=3,則EF的長為(  )

A. 1 B. 5 C. 7 D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個反比例函數(shù),在第一象限內(nèi)的圖象如圖所示,點P1,P2,P3,…,P2018在反比例函數(shù)圖象上,它們的橫坐標分別是,,,…,,縱坐標分別是1,3,5,…,共2018個連續(xù)奇數(shù),過點P1,P2,P3,…,P2018分別作軸的平行線,與的圖象交點依次是Q1,),Q2,),Q3,),…,Q2018,),則=_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一包長方體的東西,用三種不同的方法打包,哪一種方法使用的繩子最短?哪一種方法使用的繩子最長?(a+b>2c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測每袋的質(zhì)量是否符合標準,超過或不足的部分分別用正、負數(shù)來表示,記錄如下表:

與標準質(zhì)量的差值
(單位:g

5

2

0

1

3

6

袋 數(shù)

1

4

3

4

5

3

1)這批樣品的平均質(zhì)量比標準質(zhì)量多還是少?多或少幾克?

2)若每袋標準質(zhì)量為450克,則抽樣檢測的總質(zhì)量是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD為正方形,已知點A(﹣6,0),D(﹣7,3),點B、C在第二象限內(nèi).

(1)求點B的坐標。

(2)將正方形ABCD以每秒1個單位的速度沿x軸向右平移t秒,若存在某一時刻t,使在第一象限內(nèi)點B、D兩點的對應(yīng)點B′、D′正好落在某反比例函數(shù)的圖象上,請求出此時t的值以及這個反比例函數(shù)的解析式;

(3)在(2)的情況下,問是否存在x軸上的點P和反比例函數(shù)圖象上的點Q,使得以P、Q、B′、D′四個點為頂點的四邊形是平行四邊形?若存在,請直接寫出符合題意的點P、Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD的兩條對稱軸為坐標軸,點A的坐標為(2,1).一張透明紙上畫有一個點和一條拋物線,平移透明紙,這個點與點A重合,此時拋物線的函數(shù)表達式為y=x2 , 再次平移透明紙,使這個點與點C重合,則該拋物線的函數(shù)表達式變?yōu)椋?)
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】順次連接對角線相等的四邊形的四邊中點,所得的四邊形一定是____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD
(1)求證:BD平分∠ABC;
(2)當∠ODB=30°時,求證:BC=OD.

查看答案和解析>>

同步練習冊答案