【題目】如圖,方格紙中的每個(gè)小正方形的邊長(zhǎng)都為1,在建立平面直角坐標(biāo)系后,ABC的頂點(diǎn)均在格點(diǎn)上.

1)以點(diǎn)A為旋轉(zhuǎn)中心,將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到AB1C1,畫(huà)出AB1C1;

2)畫(huà)出ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的A2B2C2,若點(diǎn)B的坐標(biāo)為(-2,-2),則點(diǎn)B2的坐標(biāo)為_________

3)若A2B2C2可看作是由AB1C1繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到的,則點(diǎn)P的坐標(biāo)為______.

【答案】1)見(jiàn)解析;(2)圖見(jiàn)解析;(22);(3)(0,-1

【解析】

1)利用網(wǎng)格特點(diǎn)和旋轉(zhuǎn)的性質(zhì)畫(huà)出B、C的對(duì)應(yīng)點(diǎn)B1C1,從而得到△AB1C1

2)利用關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特征寫(xiě)出A2B2、C2的坐標(biāo),然后描點(diǎn)連線即可;

3)連接A1A2C1C2,作A1A2C1C2的垂直平分線交于點(diǎn)P,觀察圖形即可得出結(jié)論.

1)如圖,△AB1C1為所作;

2)如圖,△A2B2C2為所作;若點(diǎn)B的坐標(biāo)為(-2,-2),則點(diǎn)B2的坐標(biāo)為(2,2);

3)連接A1A2C1C2,作A1A2C1C2的垂直平分線交于點(diǎn)P,由圖可知:P0,-1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的對(duì)角線AC=12,∠ACO=30°

(1)求B、C兩點(diǎn)的坐標(biāo);

(2)過(guò)點(diǎn)G()作GFAC,垂足為F,直線GF分別交AB、OC于點(diǎn)E、D,求直線DE的解析式;

(3)的條件下,若點(diǎn)M在直線DE上,平面內(nèi)是否存在點(diǎn)P,使以O(shè)、F、M、P為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分如圖,在ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn),分別連接BE、DF、BD.

(1)求證:△AEB≌△CFD;
(2)若四邊形EBFD是菱形,求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱(chēng)這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱(chēng)為這個(gè)四邊形的勾股邊.

(1)寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是勾股四邊形的兩種圖形的名稱(chēng)      ,      ;

(2)如圖1,已知格點(diǎn)(小正方形的頂點(diǎn))O(0,0),A(3,0),B(0,4),請(qǐng)你直接寫(xiě)出所有以格點(diǎn)為頂點(diǎn),OA、OB為勾股邊且有對(duì)角線相等的勾股四邊形OAMB的頂點(diǎn)M的坐標(biāo).

(3)如圖2,將△ABC繞頂點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△DBE,連接AD、DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

(4)若將圖2中△ABC繞頂點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)a度(0°<a<90°),得到△DBE,連接AD、DC,則∠DCB=      °,四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線段ABx軸上點(diǎn)A,B的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)CD,連接AC,BDCD.得平行四邊形ABDC

1)補(bǔ)全圖形,直接寫(xiě)出點(diǎn)C,D的坐標(biāo);

2)若在y軸上存在點(diǎn)M,連接MAMB,使SMAB=S四邊形ABDC,求出點(diǎn)M的坐標(biāo).

3)若點(diǎn)P在直線BD上運(yùn)動(dòng),連接PC,PO.請(qǐng)畫(huà)出圖形,探索∠CPO、∠DCP、∠BOP的數(shù)量關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)對(duì)本校初2017500名學(xué)生中中考參加體育加試測(cè)試情況進(jìn)行調(diào)查,根據(jù)男生1000米及女生800米測(cè)試成績(jī)整理,繪制成不完整的統(tǒng)計(jì)圖,(圖①,圖②),請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問(wèn)題:

(1)該校畢業(yè)生中男生有 人;扇形統(tǒng)計(jì)圖中a=

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若500名學(xué)生中隨機(jī)抽取一名學(xué)生,這名學(xué)生該項(xiàng)成績(jī)?cè)?/span>8分及8分以下的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠MON = 50°,OE 平分∠MON,點(diǎn)A、B、C分別是射線OMOE、ON上的動(dòng)點(diǎn)(AB、C不與點(diǎn)O重合),連接AC交射線OE于點(diǎn)D、設(shè)∠OAC = x°.


1)如圖①,若AB//ON

①則∠ABO 的度數(shù)是________;

②當(dāng)∠BAD =ABD 時(shí),x=_______;當(dāng)∠BAD = BDA 時(shí),x=________

2)如圖②,若ABOE,則是否存在這樣的x值,使得 ABD 中有一個(gè)角是另一個(gè)角的兩倍.存在,直接寫(xiě)出x的值;不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)M(2,1)
(1)求該函數(shù)的表達(dá)式;
(2)當(dāng)2<x<4時(shí),求y的取值范圍(直接寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案