【題目】如圖,在平面直角坐標系xOy中,點A(3,3),點B(4,0),點C(0,﹣1).
(1)以點C為中心,把△ABC逆時針旋轉90°,畫出旋轉后的圖形△A′B′C;
(2)在(1)中的條件下,
①點A經過的路徑的長為 (結果保留π);②寫出點B′的坐標為 .
科目:初中數學 來源: 題型:
【題目】如圖1,將矩形ABCD沿DE折疊,使頂點A落在DC上的點A′處,然后將矩形展平,沿EF折疊,使頂點A落在折痕DE上的點G處.再將矩形ABCD沿CE折疊,此時頂點B恰好落在DE上的點H處.如圖2.
(1)求證:EG=CH;
(2)已知AF=,求AD和AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,四邊形ABCD中,BC∥AD,∠A=90°,點P從A點出發(fā),沿折線AB→BC→CD運動,到點D時停止,已知△PAD的面積s與點P運動的路程x的函數圖象如圖②所示,則點P從開始到停止運動的總路程為( )
A. 4 B. 2+ C. 5 D. 4+
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于E.
(1)求證:BE=AD;(2)若∠DCE=15°,AB=2,求在四邊形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為⊙O直徑,P點為半徑OA上異于O點和A點的一個點,過P點作與直徑AB垂直的弦CD,連接AD,作BE⊥AB,OE∥AD交BE于E點,連接AE、DE、AE交CD于F點.
(1)求證:DE為⊙O切線;
(2)若⊙O的半徑為3,sin∠ADP=,求AD;
(3)請猜想PF與FD的數量關系,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD是水平的,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經過的路線長為___________cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一只拉桿式旅行箱(圖1),其側面示意圖如圖2所示,已知箱體長AB=50cm,拉桿BC的伸長距離最大時可達35cm,點A、B、C在同一條直線上,在箱體底端裝有圓形的滾筒⊙A,⊙A與水平地面切于點D,在拉桿伸長至最大的情況下,當點B距離水平地面38cm時,點C到水平面的距離CE為59cm.設AF∥MN.
(1)求⊙A的半徑長;
(2)當人的手自然下垂拉旅行箱時,人感覺較為舒服,某人將手自然下垂在C端拉旅行箱時,CE為80cm,∠CAF=64°.求此時拉桿BC的伸長距離.(精確到1cm,參考數據:sin64°≈0.90,cos64°≈0.39,tan64°≈2.1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=kx+b(k≠0)與反比例函數y=(m≠0)的圖象相交于A、B兩點,且點A的坐標是(1,2),點B的坐標是(﹣2,w).
(1)求一次函數與反比例函數的解析式;
(2)在x軸的正半軸上找一點C,使△AOC的面積等于△ABO的面積,并求出點C的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com