【題目】如圖,小剛將一個正方形紙片剪去一個寬為5cm的長條后,再從剩下的長方形紙片上剪去一個寬為6cm的長條.如果兩次剪下的長條面積正好相等,求兩個所剪下的長條的面積之和.
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,有一個銳角為60°,BC=6.若點P在直線AC上(不與點A,C重合),且∠ABP=30°,則CP的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在一條可以折疊的數(shù)軸上,點A,B分別表示數(shù)-9和4.
(1)A,B兩點之間的距離為________.
(2)如圖2,如果以點C為折點,將這條數(shù)軸向右對折,此時點A落在點B的右邊1個單位長度處,則點C表示的數(shù)是________.
(3)如圖1,若點A以每秒3個單位長度的速度沿數(shù)軸向右運動,點B以每秒2個單位長度的速度也沿數(shù)軸向右運動,那么經(jīng)過多少時間,A、B兩點相距4個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,將△ABC繞點C逆時針旋轉,旋轉后的圖形是△A′B′C,點A的對應點A′落在中線AD上,且點A′是△ABC的重心,A′B′與BC相交于點E,那么BE:CE= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:一輛汽車在一個十字路口遇到紅燈剎車停下,汽車里的駕駛員看地面的斑馬線前后兩端的視角分別是∠DCA=30°和∠DCB=60°,如果斑馬線的寬度是AB=3米,駕駛員與車頭的距離是0.8米,這時汽車車頭與斑馬線的距離x是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點D是正方形OABC的邊AB上的動點,OC=6.以AD為一邊在AB的右側作正方形ADEF,連結BF交DE于P點.
(1)請直接寫出點A、B的坐標;
(2)在點D的運動過程中,OD與BF是否存在特殊的位置關系?若存在,試寫出OD與BF的位置關系,并證明;若不存在,請說明理由.
(3)當P點為線段DE的三等分點時,試求出AF的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出
(1)如圖1,點A為線段BC外一動點,且BC=a,AB=b,填空:當點A位于 時,線段AC的長取得最大值,且最大值為 (用含a,b的式子表示).
問題探究
(2)點A為線段BC外一動點,且BC=6,AB=3,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE,找出圖中與BE相等的線段,請說明理由,并直接寫出線段BE長的最大值.
問題解決:
(3)①如圖3,在平面直角坐標系中,點A的坐標為(2,0),點B的坐標為(5,0),點P為線段AB外一動點,且PA=2,PM=PB,∠BPM=90°,求線段AM長的最大值及此時點P的坐標.
②如圖4,在四邊形ABCD中,AB=AD,∠BAD=60°,BC=4,若對角線BD⊥CD于點D,請直接寫出對角線AC的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,平行四邊形 ABCD中,O是CD的中點,連接AO并延長,交BC的延長線于點E.
(1)求證:△AOD ≌ △EOC;
(2)連接AC,DE,當∠B∠AEB _______ °時,四邊形ACED是正方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用兩個邊長分別為a,b的正方形,和兩個a×b的長方形,拼成圖案(1),圖案(1)里含有一個乘法公式,你發(fā)現(xiàn)了嗎?請寫出來: .
(2)請你用同樣的四個圖形,再拼出一個圖案來,要求也可以說明這個公式,并且同時是對稱圖形.
(3)現(xiàn)有邊長分別為a,b的正方形紙片和長為b、寬為a的長方形紙片各若干張,試選用這些紙片(每種紙片至少用一次)拼成一個長方形,使拼出的長方形面積為(每兩張紙片之間既不重疊,也無空隙,拼出的圖中必須保留拼圖痕跡)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com