【題目】如圖:一輛汽車(chē)在一個(gè)十字路口遇到紅燈剎車(chē)停下,汽車(chē)?yán)锏鸟{駛員看地面的斑馬線前后兩端的視角分別是∠DCA=30°和∠DCB=60°,如果斑馬線的寬度是AB=3米,駕駛員與車(chē)頭的距離是0.8米,這時(shí)汽車(chē)車(chē)頭與斑馬線的距離x是多少?

【答案】0.7

【解析】試題分析:根據(jù)已知角的度數(shù),易求得∠BAC=∠BCA=30°,由此得BC=AB=3米;可在Rt△CBF中,根據(jù)BC的長(zhǎng)和∠CBF的余弦值求出BF的長(zhǎng),進(jìn)而由x=BF-EF求得汽車(chē)車(chē)頭與斑馬線的距離.

延長(zhǎng)AB

∵CD∥AB,

∴∠CAB=30°,∠CBF=60°;

∴∠BCA=60°-30°=30°,即∠BAC=∠BCA;

∴BC=AB=3米;

Rt△BCF中,BC=3米,∠CBF=60°;

∴BF=BC=1.5米;

x=BF-EF=1.5-0.8=0.7米.

答:這時(shí)汽車(chē)車(chē)頭與斑馬線的距離x0.7米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,直線y=kx+2x軸正半軸相交于A(t,0),與y軸相交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A和點(diǎn)B,點(diǎn)C在第三象象限內(nèi),且ACAB,tanACB=

(1)當(dāng)t=1時(shí),求拋物線的表達(dá)式;

(2)試用含t的代數(shù)式表示點(diǎn)C的坐標(biāo);

(3)如果點(diǎn)C在這條拋物線的對(duì)稱軸上,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人分別從A、B兩地同時(shí)出發(fā),相向而行,勻速前往B地、A地,兩人相遇時(shí)停留了4min,又各自按原速前往目的地,甲、乙兩人之間的距離y(m)與甲所用時(shí)間x(min)之間的函數(shù)關(guān)系如圖所示.有下列說(shuō)法:

A、B之間的距離為1200m; 乙行走的速度是甲的1.5倍;b=960; ④ a=34.

以上結(jié)論正確的有(  )

A. ①② B. ①②③ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為⊙O的內(nèi)接三角形,BC=24 , ,點(diǎn)D為弧BC上一動(dòng)點(diǎn),CE垂直直線OD于點(diǎn)E, 當(dāng)點(diǎn)D由B點(diǎn)沿弧BC運(yùn)動(dòng)到點(diǎn)C時(shí),點(diǎn)E經(jīng)過(guò)的路徑長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,平行四邊形 ABCD中,O是CD的中點(diǎn),連接AO并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)E.

(1)求證:△AOD ≌ △EOC;

(2)連接AC,DE,當(dāng)∠B∠AEB _______ °時(shí),四邊形ACED是正方形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小剛將一個(gè)正方形紙片剪去一個(gè)寬為5cm的長(zhǎng)條后,再?gòu)氖O碌拈L(zhǎng)方形紙片上剪去一個(gè)寬為6cm的長(zhǎng)條.如果兩次剪下的長(zhǎng)條面積正好相等,求兩個(gè)所剪下的長(zhǎng)條的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用同樣規(guī)格的黑、白兩種顏色的正方形瓷磚按下圖所示的方式鋪寬為1.5米的小路.

1)鋪第5個(gè)圖形用黑色正方形瓷磚 塊;

2)按照此方式鋪下去,鋪第 n 個(gè)圖形用黑色正方形瓷磚 塊;(用含 n的代數(shù)式表示)

3)若黑、白兩種顏色的瓷磚規(guī)格都為( 長(zhǎng)0.50.5米),且黑色正方形瓷磚每塊價(jià)格 25 元,白色正方形瓷磚每塊價(jià)格30元,若按照此方式恰好鋪滿該小路某一段(該段小路的總面積為 18.75 平方米),求該段小路所需瓷磚的總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+與反比例函數(shù)y=(x<0)的圖象交于A(-4,a)、B(-1,b)兩點(diǎn),ACx軸于C,BDy軸于D

1)求a 、bk的值;

2)連接OA,OB,求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市有兩種出租車(chē).的計(jì)價(jià)方式為:當(dāng)行駛路程不超過(guò)千米時(shí)收費(fèi)元,每超過(guò)千米則另外收費(fèi)元(不足千米按千米收費(fèi));的計(jì)價(jià)方式為:當(dāng)行駛路程不超過(guò)千米時(shí)收費(fèi)元,每超過(guò)千米則另外收費(fèi)元(不足千米按千米收費(fèi)).某人到該市出差,需要乘坐的路程為千米.

1)當(dāng)時(shí),請(qǐng)分別求出乘坐兩種出租車(chē)的費(fèi)用;

2)①此人若乘坐種出租車(chē)比乘坐種出租車(chē)的費(fèi)用省元,則求的值;

②某人乘坐的路程大于千米,請(qǐng)幫他規(guī)劃如何選擇乘坐哪種出租車(chē)較合算?

查看答案和解析>>

同步練習(xí)冊(cè)答案