【題目】中秋佳節(jié)時我國有賞月和吃月餅的傳統(tǒng),某校數(shù)學興趣小組為了了解本校學生喜愛月餅的情況,隨機抽取了60名同學進行問卷調(diào)查,經(jīng)過統(tǒng)計后繪制了兩幅尚不完整的統(tǒng)計圖.

(注:參與問卷調(diào)查的每一位同學在任何一種分類統(tǒng)計中只有一種選擇)

請根據(jù)統(tǒng)計圖完成下列問題:

1)扇形統(tǒng)計圖中,很喜歡的部分所對應(yīng)的圓心角為__________度;條形統(tǒng)計圖中,很喜歡豆沙月餅的學生有__________人;

2)若該校共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該校學生中很喜歡比較喜歡月餅的共有__________人.

3)甲同學最愛吃云腿月餅,乙同學最愛吃豆沙月餅,現(xiàn)有重量、包裝完全一樣的云腿、豆沙、蓮蓉、蛋黃四種月餅各一個,讓甲、乙每人各選一個,請用畫樹狀圖法或列表法,求出甲、乙兩人中有且只有一人選中自己最愛吃的月餅的概率.

【答案】1126°,426753

【解析】

(1)根據(jù)很喜歡的部分占的百分比,計算所對應(yīng)的圓心角;

(2)用樣本估計總體的思想即可解決問題.

(3)畫出樹狀圖,根據(jù)概率的定義即可解決.

解:(1)∵“很喜歡的部分占的百分比為:1﹣25%﹣40%=35%,

扇形統(tǒng)計圖中,很喜歡的部分所對應(yīng)的圓心角為:360°×35%=126°;

∵“很喜歡月餅的同學數(shù):60×35%=21(),

條形統(tǒng)計圖中,喜歡豆沙月餅的學生數(shù):21﹣6﹣3﹣8=4(

故答案分別為126°,4.

(2)900名學生中很喜歡的有900×35%=315人,900名學生中比較喜歡的有900×40%=360人,

估計該校學生中很喜歡比較喜歡月餅的共有675人.

故答案為675.

(3)為了表示方便,記云腿、豆沙、蓮蓉、蛋黃四種月餅分別為A、B、CD.畫出的樹狀圖如圖所示,

甲、乙兩人中有且只有一人選中自己最愛吃的月餅的概率==

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組:請結(jié)合題意填空,完成本題的解答:

1)解不等式①,得:  ;

2)解不等式②得:  ;

3)把不等式①和②的解集在數(shù)軸上表示出來;

4)原不等式組的解集為:  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為倡導(dǎo)健康環(huán)保,自帶水杯已成為一種好習慣,某超市銷售甲,乙兩種型號水杯,進價和售價均保持不變,其中甲種型號水杯進價為25/個,乙種型號水杯進價為45/個,下表是前兩月兩種型號水杯的銷售情況:

時間

銷售數(shù)量(個)

銷售收入(元)(銷售收入=售價×銷售數(shù)量)

甲種型號

乙種型號

第一月

22

8

1100

第二月

38

24

2460

1)求甲、乙兩種型號水杯的售價;

2)第三月超市計劃再購進甲、乙兩種型號水杯共80個,這批水杯進貨的預(yù)算成本不超過2600元,且甲種型號水杯最多購進55個,在80個水杯全部售完的情況下設(shè)購進甲種號水杯a個,利潤為w元,寫出wa的函數(shù)關(guān)系式,并求出第三月的最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點,點Ax軸上,點B在直線x=3上,直線x=3x軸交于點C

(1)求拋物線的解析式;

(2)點P從點A出發(fā),以每秒個單位長度的速度沿線段AB向點B運動,點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CA向點A運動,點P,Q同時出發(fā),當其中一點到達終點時,另一個點也隨之停止運動,設(shè)運動時間為t秒(t>0).以PQ為邊作矩形PQNM,使點N在直線x=3上.

①當t為何值時,矩形PQNM的面積最。坎⑶蟪鲎钚∶娣e;

②直接寫出當t為何值時,恰好有矩形PQNM的頂點落在拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx2+bx+c經(jīng)過A 03),B 43)兩點,與x軸交于點E,F,以AB為邊作矩形ABCD,其中CD邊經(jīng)過拋物線的項點M,點P是拋物線上一動點(點P不與點A,B重合),過點Py軸的平行線1與直線AB交于點G,與直線BD交于點H,連接AF交直線BD于點N

1)求該拋物線的解析式以及頂點M的坐標;

2)當線段PH2GH時,求點P的坐標;

3)在拋物線上是否存在點P,使得以點P,E,NF為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB上一點,將ADE沿DE翻折,點A恰好落在BC上,記為A1,折痕為DE.再將∠B沿EA1向內(nèi)翻折,點B恰好落在DE上,記為B1.若AD1,則AB的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC8,BC6.動點P從點A出發(fā),沿AB以每秒5個單位長度的速度向終點B運動.當點P不與點A重合時,過點PPDAC于點D、PEAC,過點DDEAB,DEPE交于點E.設(shè)點P的運動時間為t秒.

1)線段AD的長為   .(用含t的代數(shù)式表示).

2)當點E落在BC邊上時,求t的值.

3)設(shè)DPEABC重疊部分圖形的面積為S,求St之間的函數(shù)關(guān)系式.

4)若線段PE的中點為Q,當點Q落在ABC一邊垂直平分線上時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB、FC

1)求證:四邊形ABFC是菱形;

2)若AD=,BE=1,求半圓的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙A與菱形ABCD的邊BC相切于點E,與邊AB相交于點F,連接EF

1)求證:CD是⊙A的切線;

2)若⊙A的半徑為2,tanBEF,求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案