【題目】如圖在平面直角坐標系中,四邊形OABC是正方形,A的坐標是(4,0),p為邊AB上的一點,CPB=60°,沿CP折疊正方形后,B落在平面內(nèi)B’處,B’的坐標為(

A.(2, 2)B.(, 2-2)C.(2, 4-2)D.(, 4-2)

【答案】C

【解析】

B′E⊥y軸于E,B′F⊥x軸于F,根據(jù)正方形的性質(zhì)OC=BC=4∠B=90°,由∠BPC=60°∠1=30°,再根據(jù)折疊的性質(zhì)得到∠1=∠2=30°,CB′=CB=4,所以∠3=30°,在Rt△CB′E中,根據(jù)含30度的直角三角形三邊的關系得到B′E=CB′=2,CE=B′E=2,則OE=4-2,所以B′F=4-2,然后可寫出B′點坐標.

解:作B′E⊥y軸于EB′F⊥x軸于F,如圖,

四邊形OABC是正方形,點A的坐標是(4,0),

∴OC=BC=4,∠B=90°,

∵∠BPC=60°,

∴∠1=30°

∵△CPB沿CP折疊,使得點B落在B′處,

∴∠1=∠2=30°,CB′=CB=4,

∴∠3=30°,

Rt△CB′E中,B′E=CB′=2,CE==2

∴OE=OC-CE=4-2,

∴B′F=OE=4-2

∴B′點坐標為(2,4-2).

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,△ABC中,∠C90°,EBC邊中點.

1)尺規(guī)作圖:以AC為直徑,作O,交AB于點D(保留作圖痕跡,不需寫作法).

2)連結(jié)DE,求證:DEO的切線;

3)若AC5DE,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C = 90°,點O是斜邊AB上一定點,到點O的距離等于OB的所有點組成圖形W,圖形WAB,BC分別交于點DE,連接AEDE,∠AED=B

1)判斷圖形WAE所在直線的公共點個數(shù),并證明.

2)若,,求OB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),已知小正方形ABCD的面積為1,把它的各邊延長一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長按原法延長一倍得到正方形A2B2C2D2(如圖(2));正方形A2B2C2D2的面積為________,以此下去,則正方形AnBnCnDn的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提升干線公路美化度,相關部門擬定派一個工程隊對39000米的公路進行路面“白改黑”工程.該工程隊計劃使用一大一小兩種型號設備交替的方式施工,原計劃小型設備每小時鋪設路面30米,大型設備每小時鋪設路面60

1)由于小型設備工作效率較低,該工程隊計劃使用大型設備的時間比使用小型設備的時間多,當這個工程完工時,小型設備的使用時間至少為多少小時?

2)通過勘察、又新增了部分支線公路美化,結(jié)果此工程的實際施工里程比最初擬定的最少里程39000米多了9000米,于是在實際施工中,小型設備在鋪設公路效率不變的情況下,使用時間比(1)中的最小值多,同時,因為工人操作大型設備不夠熟練,使得大型設備鋪設公路的效率比原計劃下降了,使用時間比(1)中大型設備使用的最短時間多,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,將繞點按逆時針方向旋轉(zhuǎn),得到

1)如圖 1,當點在線段的延長線上時,求的度數(shù);

2)如圖 2,連接.若的面積為 3,求的面積;

3)如圖 3,點為線段中點,點是線段上的動點,在繞點按逆時針方向旋轉(zhuǎn)的過程中,點的對應點是點,求線段長度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從相距420kmA、B兩地相向而行,乙車比甲車先出發(fā)1小時,兩車分別以各自的速度勻速行駛,途經(jīng)C地(AB、C三地在同一條直線上).甲車到達C地后因有事立即按原路原速返回A地,乙車從B地直達A地,甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車行駛所用的時間x(小時)的關系如圖所示,結(jié)合圖象信息回答下列問題:

1)甲車的速度是   千米/時,乙車的速度是   千米/時;

2)求甲車距它出發(fā)地的路程y(千米)與它行駛所用的時間x(小時)之間的函數(shù)關系式;

3)甲車出發(fā)多長時間后兩車相距90千米?請你直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在中,∠B=90°,,點DE分別是邊BC,AC的中點,連接繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為

問題發(fā)現(xiàn):

時,_____;時,_____

拓展探究:

試判斷:當時,的大小有無變化?請僅就圖2的情況給出證明.

問題解決:

旋轉(zhuǎn)至A、D、E三點共線時,直接寫出線段BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yx+4的圖象與反比例函數(shù)y(k為常數(shù)且k0)的圖象交于A(1,a),B兩點,與x軸交于點C

(1)a,k的值及點B的坐標;

(2)若點Px軸上,且SACPSBOC,直接寫出點P的坐標.

查看答案和解析>>

同步練習冊答案