【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求a,k的值及點B的坐標(biāo);
(2)若點P在x軸上,且S△ACP=S△BOC,直接寫出點P的坐標(biāo).
【答案】(1)a=3;k=-3;B(-3,1);(2)P(-6,0)或(-2,0)
【解析】
(1)求出A點坐標(biāo),代入函數(shù)解析式,聯(lián)立方程組即可解題,
(2)根據(jù)面積即可求解.
解:(1)把點A(-1,a)代入y=x+4,得a=3,
∴A(-1,3)
把A(-1,3)代入反比例函數(shù)y=
∴k=-3.
∴反比例函數(shù)的表達(dá)式為y=-
聯(lián)立兩個函數(shù)的表達(dá)式得
解得或
∴點B的坐標(biāo)為B(-3,1).
(2)P(-6,0)或(-2,0)
∵B(-3,1),A(-1,3),C(-4,0),
∴S△BOC=2,即S△ACP=S△BOC=3,
∴=3, CP=2,
∵P在x軸上,
∴P(-6,0)或(-2,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象分別交于第二、四象限的A,B兩點,點A的橫坐標(biāo)為.
求反比例函數(shù)的表達(dá)式;
根據(jù)圖象回答:當(dāng)x取何值時,請直接寫出答案:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲騎自行車、乙騎摩托車沿相同路線由A地到B地,行駛過程中路程與時間的函數(shù)關(guān)系的圖象如圖. 根據(jù)圖象解決下列問題:
(1) 誰先出發(fā)?先出發(fā)多少時間?誰先到達(dá)終點?先到多少時間?
(2) 分別求出甲、乙兩人的行駛速度;
(3) 在什么時間段內(nèi),兩人均行駛在途中(不包括起點和終點)?在這一時間段內(nèi),請你根據(jù)下列情形,分別列出關(guān)于行駛時間x的方程或不等式(不化簡,也不求解):① 甲在乙的前面;② 甲與乙相遇;③ 甲在乙后面.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀材料)“九宮圖”源于我國古代夏禹時期的“洛書”圖1所示,是世界上最早的矩陣,又稱“幻方”,用今天的數(shù)學(xué)符號翻譯出來,“洛書”就是一個三階“幻方”圖2所示.
(規(guī)律總結(jié))觀察圖1、圖2,根據(jù)“九宮圖”中各數(shù)字之間的關(guān)系,我們可以總結(jié)出“幻方”需要滿足的條件是______;若圖3,是一個“幻方”,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】早上,小明從家里步行去學(xué)校,出發(fā)一段時間后,小明媽媽發(fā)現(xiàn)小明的作業(yè)本落在家里,便帶上作業(yè)本騎車追趕,途中追上小明兩人稍作停留,媽媽騎車返回,小明繼續(xù)步行前往學(xué)校,兩人同時到達(dá).設(shè)小明在途的時間為x,兩人之間的距離為y,則下列選項中的圖象能大致反映y與x之間關(guān)系的是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級一班為推選學(xué)生參加“中國古詩詞大會的海選活動在班級內(nèi)舉行一次選拔賽成績分為A,B,C,D四個等級,并將收集到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖請你根據(jù)圖中所給出的信息解答下列各題.
求九年級一班共有多少人
在扇形統(tǒng)計圖中等級為“D”的部分所對應(yīng)扇形的圓心角為多少度
補(bǔ)全條形統(tǒng)計圖和扇形統(tǒng)計圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD與CEFG,如圖放置,點B、C、E共線,點C、D、G共線,連接AF,取AF的中點H,連接GH,若,,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.
(1)求證:PD是⊙O的切線;
(2)求證:△ABD∽△DCP;
(3)當(dāng)AB=5cm,AC=12cm時,求線段PC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com