【題目】如圖,已知在中,,,與相切于點(diǎn),則圖中陰影部分的面積為________.(結(jié)果保留)
【答案】
【解析】
連接OC,由AB為圓的切線,得到OC垂直于AB,再由OA=OB,利用三線合一得到C為AB中點(diǎn),且OC為角平分線,在直角三角形AOC中,利用30度所對的直角邊等于斜邊的一半求出OC的長,利用勾股定理求出AC的長,進(jìn)而確定出AB的長,求出∠AOB度數(shù),陰影部分面積=三角形AOB面積-扇形面積,求出即可.
解:連接OC,
∵AB與圓O相切,
∴OC⊥AB,
∵OA=OB,
∴∠AOC=∠BOC,∠A=∠B=30°,
在Rt△AOC中,∠A=30°,OA=8,
∴OC=OA=4,∠AOC=60°,
∴∠AOB=120°,AC==4,即AB=2AC=8,
則S陰影=S△AOB-S扇形=×8×4-=16.
故答案為:16.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一段米長的河堤的整治任務(wù),打算請兩個(gè)工程隊(duì)來完成,經(jīng)過調(diào)查發(fā)現(xiàn),工程隊(duì)每天比工程隊(duì)每天多整治米,工程隊(duì)單獨(dú)整治的工期是工程隊(duì)單獨(dú)整治的工期的.
(1)問工程隊(duì)每天分別整治多少米?
(2)由兩個(gè)工程隊(duì)先后接力完成,共用時(shí)天,問工程隊(duì)分別整治多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克元的草莓,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),也不高于每千克元,經(jīng)試銷發(fā)現(xiàn),銷售量(千克)與銷售單價(jià)(元)符合一次函數(shù)關(guān)系,如圖是與的函數(shù)關(guān)系圖象.
求與的函數(shù)解析式(也稱關(guān)系式);
設(shè)該水果銷售店試銷草莓獲得的利潤為元,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某農(nóng)場老板準(zhǔn)備建造一個(gè)矩形羊圈,他打算讓矩形羊圈的一面完全靠著墻,墻可利用的長度為,另外三面用長度為的籬笆圍成(籬笆正好要全部用完,且不考慮接頭的部分)
若要使矩形羊圈的面積為,則垂直于墻的一邊長為多少米?
農(nóng)場老板又想將羊圈的面積重新建造成面積為,從而可以養(yǎng)更多的羊,請聰明的你告訴他:他的這個(gè)想法能實(shí)現(xiàn)嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:x2﹣6x=(x2﹣6x+9)﹣9=(x﹣3)2﹣9;﹣x2+10=﹣(x2﹣10x+25)+25=﹣(x﹣5)2+25,這一種方法稱為配方法,利用配方法請解以下各題:
(1)按上面材料提示的方法填空:a2﹣4a= = .﹣a2+12a= = .
(2)探究:當(dāng)a取不同的實(shí)數(shù)時(shí)在得到的代數(shù)式a2﹣4a的值中是否存在最小值?請說明理由.
(3)應(yīng)用:如圖.已知線段AB=6,M是AB上的一個(gè)動點(diǎn),設(shè)AM=x,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長方形MBCN.問:當(dāng)點(diǎn)M在AB上運(yùn)動時(shí),長方形MBCN的面積是否存在最大值?若存在,請求出這個(gè)最大值;否則請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實(shí)施,商場決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出 4臺.商場要想在這種冰箱銷售中每天盈利 4800 元,同時(shí)又要使百姓得到實(shí)惠,每臺冰箱應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,CD是⊙O的切線,AD⊥CD于點(diǎn)D.E是AB延長線上一點(diǎn),CE交⊙O于點(diǎn)F,連結(jié)OC,AC.
(1)求證:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班甲、乙、丙三位同學(xué)進(jìn)行了一次用正方形紙片折疊探究相關(guān)數(shù)學(xué)問題的課題學(xué)習(xí)活動.
活動情境:
如圖2,將邊長為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與AB、DC交于點(diǎn)E、G),使點(diǎn)B落在AD邊上的點(diǎn) F處,FN與DC交于點(diǎn)M處,連接BF與EG交于點(diǎn)P.
所得結(jié)論:
當(dāng)點(diǎn)F與AD的中點(diǎn)重合時(shí):(如圖1)甲、乙、丙三位同學(xué)各得到如下一個(gè)正確結(jié)論(或結(jié)果):
甲:△AEF的邊AE=____cm,EF=____cm;
乙:△FDM的周長為16 cm;
丙:EG=BF.
你的任務(wù):
【1】填充甲同學(xué)所得結(jié)果中的數(shù)據(jù);
【2】寫出在乙同學(xué)所得結(jié)果的求解過程;
【3】當(dāng)點(diǎn)F在AD邊上除點(diǎn)A、D外的任何一處(如圖2)時(shí):
① 試問乙同學(xué)的結(jié)果是否發(fā)生變化?請證明你的結(jié)論;
② 丙同學(xué)的結(jié)論還成立嗎?若不成立,請說明理由,若你認(rèn)為成立,先證明EG=BF,再求出S(S為四邊形AEGD的面積)與x(AF=x)的函數(shù)關(guān)系式,并問當(dāng)x為何值時(shí),S最大?最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com