【題目】如圖,在ABC中,∠ACB=90°,將ABC沿直線AB翻折得到ABD,連接CDAB于點ME是線段CM上的點,連接BEFBDE的外接圓與AD的另一個交點,連接EFBF,

1)求證:BEF是直角三角形;

2)求證:BEFBCA;

3)當AB=6BC=m時,在線段CM正存在點E,使得EFAB互相平分,求m的值.

【答案】1)見解析;(2)見解析;(3

【解析】

(1)想辦法證明∠BEF=90°即可解決問題(也可以利用圓內接四邊形的性質直接證明).

(2)根據(jù)兩角對應相等兩三角形相似證明.

(3)證明四邊形AFBE是平行四邊形,推出FJ=BD=mEF=m,由△ABC∽△CBM,可得BM=,由△BEF∽△BCA,推出,由此構建方程求解即可.

1)證明:由折疊可知,∠ADB=ACB=90°

∵∠EFB=EDB,∠EBF=EDF

∴∠EFB+EBF=EDB+EDF=ADB=90°

∴∠BEF=90°,

∴△BEF是直角三角形.

(2) 證明:∵BC=BD

∴∠BDC=BCD,

∵∠EFB=EDB

∴∠EFB=BCD,

AC=ADBC=BD,

ABCD

∴∠AMC=90°,

∵∠BCD+ACD=ACD+CAB=90°,

∴∠BCD=CAB,

∴∠BFE=CAB

∵∠ACB=FEB=90°,

∴△BEF∽△BCA

(3) EFABJ.連接AE,如下圖所示:

EFAB互相平分,

∴四邊形AFBE是平行四邊形,

∴∠EFA=FEB=90°,即EFAD

BDAD,

EFBD

AJ=JB,

AF=DF

∴ FJ=

∴ EF=

∵ △ABC∽△CBM

∴ BC:MB=AB:BC

∴ BM=,

∵ △BEJ∽△BME

∴ BE:BM=BJ:BE

∴ BE=,

∵ △BEF∽△BCA

解得(負根舍去).

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了豐富學生課余生活,開展了第二課堂活動,推出了以下四種選修課程:.繪畫;.唱歌;.跳舞;.演講;.書法.學校規(guī)定:每個學生都必須報名且只能選擇其中的一個課程.學校隨機抽查了部分學生,對他們選擇的課程情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.

請結合統(tǒng)計圖中的信息解決下列問題:

1)這次抽查的學生人數(shù)是多少人?

2)將條形統(tǒng)計圖補充完整.

3)求扇形統(tǒng)計圖中課程所對應扇形的圓心角的度數(shù).

4)如果該校共有1200名學生,請你估計該校選擇課程的學生約有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】201912月以來,湖北省武漢市部分醫(yī)院陸續(xù)發(fā)現(xiàn)不明原因肺炎病例,現(xiàn)已證實該肺炎為一種新型冠狀病毒感染的肺炎,其傳染性較強.為了有效地避免交叉感染,需要采取以下防護措施:①戴口罩;②勤洗手;③少出門;④重隔離;⑤捂口鼻;⑥謹慎吃.某公司為了解員工對防護措施的了解程度(包括不了解、了解很少、基本了解和很了解),通過網(wǎng)上問卷調查的方式進行了隨機抽樣調查(每名員工必須且只能選擇一項),并將調查結果繪制成如下兩幅統(tǒng)計圖.

請你根據(jù)上面的信息,解答下列問題

1)本次共調查了_______名員工,條形統(tǒng)計圖中________;

2)若該公司共有員工1000名,請你估計不了解防護措施的人數(shù);

3)在調查中,發(fā)現(xiàn)有4名員工對防護措施很了解,其中有3名男員工、1名女員工.若準備從他們中隨機抽取2名,讓其在公司群內普及防護措施,求恰好抽中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+3a≠0)與x軸,y軸分別交于點A(﹣10),B30),點C三點.

1)求拋物線的解析式;

2x軸上是否存在點P,使PC+PB最?若存在,請求出點P的坐標及PC+PB的最小值;若不存在,請說明理由;

3)連接BC,設E為線段BC中點.若M是拋物線上一動點,將點M繞點E旋轉180°得到點N,當以B、CM、N為頂點的四邊形是矩形時,直接寫出點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用四塊大正方形地磚和一塊小正方形地磚拼成如圖所示的實線圖案,每塊大正方形地磚面積為a,小正方形地磚面積為依次連接四塊大正方形地磚的中心得到正方形ABCD.則正方形ABCD的面積為____________(用含a,b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DABC的邊AB上一點,CEAB,DEAC于點F,若FA=FC

1)求證:四邊形ADCE是平行四邊形;

2)若AEECEF=EC=5,求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)b,c是常數(shù),圖象的一部分,與x軸的交點A在點之間,對稱軸是對于下列說法:;為實數(shù));(5)當時,,其中正確的是(

A.1)(2)(4B.1)(2)(5C.2)(3)(4D.3)(4)(5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點B在第一象限,BAx軸于點A,反比例函數(shù)yx0)的圖象與線段AB相交于點C,C是線段AB的中點,點C關于直線yx的對稱點C'的坐標為(m,6)(m6),若△OAB的面積為12,則k的值為(  )

A.4B.6C.8D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知二次函數(shù)yax24axca0)的圖像與x軸交于AB兩點(點A在點B的左側),與y軸交于點C,頂點為點D,DHx軸于HAC交于點E.連接CDBC、BE.若SCBESABE23

1)點A的坐標為 ,點B的坐標為

2)連結BD,是否存在數(shù)值a,使得∠CDB=∠BAC?若存在,請求出a的值;若不存在,請說明理由;

3)若AC恰好平分∠DCB,求二次函數(shù)的表達式.

查看答案和解析>>

同步練習冊答案